The First Principles Investigation of Structural, Electronic, Mechanical and Lattice Dynamical Properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds

Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 compounds which are called M2AX type MAX phases referred to as 211 and have hexagonal crystal structure with conform to P63/mmc space group, have been examined by using Generalized Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in CASTEP software package. In this study, the electronic, elastic, and lattice dynamical properties of these compounds have been investigated within the ab initio study. These compounds show metallic behavior since there is no band gap in the calculated electronic band structures. The estimated elastic constants of these compounds indicate that they are mechanically stable and their bonding nature is ionic and also, Ti2AlN0.5C0.5 compund has anisotropic character in mechanically whereas the behavior of Ti2AlB0.5C0.5 compound is nearly isotropic. Moreover, both of our compounds are brittle materials. Also, these compounds are dynamically stable since there are no soft modes in their plotted phonon dispersion curves. 

___

  • Barsoum M. W., The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates, Progress in Solid State Chemistry, 28, 201-281, 2000.
  • Dahlqvist M., Alling B., and Rosen J., Stability trends of MAX phases from first principles, Physical Review B, 81, 220102 1-4, 2010.
  • Yang Z. J., Li J., Linghu R. F., Cheng X. L., and Yang X. D., First-principle investigations on the structural dynamics of Ti2GaN, J. Alloys Comp., 574, 573-579, 2013.
  • Hea X., Bai Y., Li Y., Zhu C., and Li M., Ab initio calculations for properties of MAX phases Ti2InC, Zr2InC, and Hf2InC, Solid State Communications, 149, 564-566, 2009.
  • Barsoum M. W., Physical Properties of the MAX Phases Encyclopedia of Materials: Science and Technology Elsevier Amsterdam, 2006.
  • Barsoum M. W., El-Raghy T., Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 79, 1953-1956, 1996.
  • Yoo H., Barsoum M. W., El-Raghy T., Materials science: Ti3SiC2 has negligible thermopower, Nature, 407, 581-582, 2000.
  • Barsoum M. W., El-Raghy T., Room-temperature ductile carbides, Metall. Mater. Trans. A, 30(2), 363-369, 1999.
  • Barsoum M. W., Zhen T., Kalidindi S. R., Radovic M., Murugaiah A., Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa, Nat. Mater. 2, 107-111, 2003.
  • M.W. Barsoum M. W., Brodkin D., El-Raghy T., Layered machinable ceramics for high temperature applications, Scripta Mater., 36, 535-541, 1997.
  • El-Raghy T., Zavaliangos A., Barsoum M. W., Kalidindi S. R., Damage mechanisms around hardness indentations in Ti3SiC2, J. Am. Ceram. Soc., 80, 513-516, 1997.
  • Barsoum M. W., El-Raghy T., The MAX Phases: Unique New Carbide and Nitride Materials, American Scientist, 89, 334-343, 2001.
  • Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., and Barsoum M. W., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Adv. Mater., 23, 4248-4253, 2011.
  • Enyashin A. N. and Ivanovskii A. L., Prediction of atomic structure and electronic properties of Ti3SiC2 based nanotubes by DFTB theory, Mater. Lett., 62, 663-665, 2008.
  • Grieseler R., Hahnlein B., Stubenrauch M., Kups T., Wilke M., Hopfeld M., Pezoldt J., and Schaaf P., Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films, Appl. Surf. Sci., 292, 997-1001, 2014.
  • Mendoza-Galvan A., Rybka M., Jarrendahl K., Arwin H., Magnusson M., Hultman L., and Barsoum M. W., Spectroscopic ellipsometry study on the dielectric function of bulk Ti2AlN, Ti2AlC, Nb2AlC, (Ti0.5,Nb0.5)2AlC, and Ti3GeC2 MAX-phases, J. Appl. Phys., 109, 013530 1-8, 2011.
  • Li C., Wang Z., and Wang C., Effects of aluminium vacancies on electronic structure and optical properties of Ta4AlC3: A first principles study, Physica B Condens. Matter., 406, 3906-3910, 2011.
  • Haddad N., Garcia-Caurel E., Hultman L., Barsoum M. W., and Hug G., Dielectric properties of Ti2AlC and Ti2AlN MAX phases: The conductivity anisotropy, J. Appl. Phys., 104, 023531 1-10, 2008.
  • Rosen J., Dahlqvist M., Simak S. I., McKenzie D. R., and Bilek M. M. M., Oxygen incorporation in Ti2AlC: Tuning of anisotropic conductivity, Appl. Phys. Lett., 97, 073103 1-3, 2010.
  • Surucu G., Colakoglu K., Deligoz E., and Korozlu N., First-Principles Study on the MAX Phases Tin+1GaNn (n = 1,2, and 3), Journal of ELECTRONIC MATERIALS, 45, 4256-4264, 2016.
  • Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. J., Refson K., Payne M. C., First principles methods using CASTEP, Zeitschrift fuer Kristallographie, 220(5-6), 567-570, 2005.
  • Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Physical Review Letters, 77, 3865-3868, 1996.
  • Kohn W. and Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140 A, 1133-1138, 1965.
  • Hohenberg P. and Kohn W., Inhomogeneous Electron Gas, Phys. Rev., 136, B864-B871, 1964 .
  • Monkhorst H. J., Pack J. D., Special points for Brillouin-zone integrations, Phys. Rev. B., 13, 5188–5192, 1976.
  • Shigemi A. and Wada T., Enthalpy of Formation of Various Phases and Formation Energy of Point Defects in Perovskite-Type NaNbO3 by First-Principles Calculation, Jpn. J. Appl. Phys., 43, 6793-6798, 2004.
  • Barsoum M. W., Ali M., and El-Raghy T., Processing and characterization of Ti2AlC, Ti2AlCN and Ti2AlC0.5N0.5, Metallurgical and Materials Transactions, 31(7), 1857–1865, 2000.
  • Radovic M., Ganguly A., and Barsoum M. W., Elastic properties and phonon conductivities of Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5) solid solutions, J. Mater. Res., 23(6), 1517-1521, 2008.
  • Nye J. F., Physical Properties of Crystals 1st ed. Oxford Clarendon 148, 1957.
  • Mouhat F. and Coudert F. X., Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90, 224104 1-4, 2014.
  • Born M., On the stability of crystal lattices. I, Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160-172, 1940.
  • Born M. and Huang K., Dynamics Theory of Crystal Lattices, Oxford University Press Oxford UK, 1954.
  • Wu Z. J., Zhao E. J., Xiang H. P., Hao X. F., Liu X. J., and Meng J., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 76, 054115 1-15, 2007.
  • Feng W. and Cui S., Mechanical and electronic properties of Ti2AlN and Ti4AlN3: a first-principles study, Canadian Journal of Physics, 92, 1652-1657, 2014.
  • Pettifor D. G., Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol., 8, 345-349, 1992.
  • Voigt W., Lehrbuch der Kristallphysik [The textbook of crystal physics], Teubner B. G., Leipzig und Berlin, 1928.
  • Reuss A., Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle [Calculation of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystals], J. Appl. Math. Mech., 9, 49-58, 1929.
  • Hill R., The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A., 65, 349-354, 1952.
  • Surucu G., Kaderoglu C., Deligoz E., Ozisik H., Investigation of structural, electronic and anisotropic elastic properties of Ru-doped WB2 compound by increased valence electron concentration, Mater. Chem. Phys., 189, 90-95, 2017.
  • Chen X. Q., Niu H., Li D., and Li Y., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19(9), 1275-1281, 2011.
  • Ozisik H., Deligoz E., Colakoglu K., Surucu G., Mechanical and lattice dynamical properties of the Re2C compound, Phys. Status Solidi - Rapid Res. Lett., 4, 347-349, 2010.
  • Sun Z., Li S., Ahuja R., Schneider J. M., Calculated elastic properties of M2AlC (M = Ti, V, Cr, Nb and Ta), Solid State Communications, 129, 589-592, 2004.
  • Roknuzzaman M., Hadi M. A., and Abden M. J., First-principles Studies of the Structural, Elastic, Electronic and Optical Properties of Ti2CdC and Ti2CdN, International Journal of Integrated Sciences & Technology, 2, 7-13, 2016.
  • Schreiber E., Anderson O. L., Soga N., Elastic Constants and Their Measurements, McGraw-Hill New York, 1973.
  • Anderson O. L., A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 24, 909-917, 1963.
  • Wachter P., Filzmoser M., Rebizant J., Electronic and elastic properties of the light actinide tellurides, Physica B Condens. Matter, 293, 199-223, 2001.
  • Li C., Duan Y., and Hu W., Electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X (X = F, Cl or Br), Journal of Alloys and Compounds, 619, 66-77, 2015.
  • Clarke D. R. and Levi C. G., Materials design for the next generation thermal barrier coatings, Annual Review of Materials Research, 33, 383–417, 2003.
  • Cahill D. G., Watson S. K., and Pohl R. O., Lower limit to the thermal conductivity of disordered crystals, Physical Review B, 46, 6131–6140, 1992.
  • Clarke D. R., Phillpot S. R., Thermal barrier coating materials, Materialstoday, 8, 22-29, 2005.
  • Maradudin A. A., Montroll E. W., Weiss G. H., and Ipatova I. P., Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press-New York, 1971.
  • Montanari B. and Harrison N. M., Lattice dynamics of TiO2 rutile: influence of gradient corrections in density functional calculations, Chem. Phys. Lett., 364, 528, 2002.