Sıçanlarda borik asit, kalsiyum fruktoborat ve potasyum bor sitratın kemik sağlığı ve sistemik inflamatuvar belirteçler üzerine etkisi

Bor, kemik sağılığı üzerine olumlu etkileri olan ve doğada bulunan bir iz elementtir. Borun çeşitli formları doğada bulunmaktadır ve farklı düzeyde etkinliğe sahiptir. Bu çalışmanın amacı bor çeşitlerinin kemik sağlığı üzerine etkilerini incelemektir. Bu amaçla, yirmi dört adet wistar rat kullanılmıştır. Hayvanlar dört gruba ayrılmıştır. İlk grup kontrol grubudur ve herhangi bir uygulama yapılmamıştır. Diğer üç gruba üç hafta boyunca oral olarak gavaj ile 3mg/kg borik asit (BA), kalsiyum fruktoborat(CaFB) ve potasyum bor sitrat(KBCi) verilmiştir. Hayvanların serum ve kemik dokularında TNF-α, IL1-β, total oksidan seviyesi(TOS), total antioksidan seviyesi(TAS), osteopontin ve osteokalsin düzeyleri ELIZA yöntemi ile ölçülmüştür. Çalışma sonuçlarında kontrol grubu ve bor çeşitlerinin uygulandığı gruplar arasında serum ve kemik dokuda TNF-α ve IL-1β düzeyleri arasında anlamlı bir farklılık gözlemlenmemiştir(p>0.05). Benzer bir şekilde serum ve kemik TOS düzeyleri de kontrol ve diğer gruplar arasında anlamlı bir farklılık göstermemiştir(p>0.05). Fakat serum TAS düzeyi kontrole nispeten hem serumda hem de kemik dokuda BA, CaFB ve KBCi uygulamasıyla birlikte anlamlı şekilde artmıştır(p<0.0001). Serum osteopontin ve osteokalsin düzeyleri de özellikle kemik dokuda BA, CaFB, KBCi uygulamasıyla birlikte kontrol grubuna göre anlamlı düzeyde yükselmiştir (p<0.0001). BA, CaFB ve KBCi’ın kemik sağlığı üzerine etkileri bu çalışmayla ile kez karşılaştırılmıştır. Bor çeşitlerinin özellikle KBCi’nin kemik yapımını, total oksidan seviyesini desteklediği görülmüştür. Bu çalışma, kemik sağlığını geliştirmek, kemik hastalıkların önlenmesini sağmak ya da çeşitli etkenlerle artan stres ile baş edebilmek için BA, CaFB ve KBCi gibi bor çeşitlerinin ilerleyen zamanlarda daha yaygın kullanılabilmesi adına gerçekleştirilecek daha kapsamlı çalışmalar için bir ön çalışma olarak umut vericidir.

The effect of boric acid, calcium fructoborate and potassium boron citrate on bone health in rats

The aim of this study was to examine the effects of boron varieties on bone health. For this purpose, twenty-four wistar rats were used. Animals were separated into four groups. The first group was the control group and was treated with nothing. The other three groups were given 3mg/kg boric acid (BA), calcium fructoborate (CaFB) and potassium boron citrate (KBCi) orally by gavage for three weeks. TNF-α, IL1-β, total oxidant level (TOS), total antioxidant level (TAS), osteopontin and osteocalcin levels were measured in serum and bone tissues of animals by ELIZA method. In the results of the study, no significant difference was observed in serum and bone tissue TNF-α and IL-1β levels between the control group and the groups that were treated with boron varieties were applied (p>0.05). Similarly, serum and bone TOS levels did not differ significantly between the control and other groups (p>0.05). However, the serum TAS level increased significantly with the application of BA, CaFB and KBCi in both serum and bone tissue compared to the control (p<0.0001). Serum osteopontin and osteocalcin levels were also significantly increased with the application of BA, CaFB and KBCi, especially in bone tissue, compared to the control group (p<0.0001). The effects of BA, CaFB, and KBCi on bone health have been compared with this study, firstly. This study is promising as a preliminary study for more comprehensive studies to be carried out in order to use boron varieties such as BA, CaFB and KBCi more widely in the future in order to improve bone health, prevent bone diseases or cope with increased stress due to various factors

___

  • [1] M. Korkmaz, U. Şaylı, B.S. Şaylı, S. Bakırdere, S. Titretir, O. Yavuz Ataman, S. Keskin. (2007). Estimation of human daily boron exposure in a boron-rich area, Br. J. Nutr. 98 571–575. https://doi.org/10.1017/S000711450770911X.
  • [2] S. Orenay Boyacioglu, M. Korkmaz, E. Kahraman, H. Yildirim, S. Bora, O.Y. Ataman. (2017). Biological effects of tolerable level chronic boron intake on transcription factors, J. Trace Elem. Med. Biol. 39 30–35. https://doi.org/10.1016/j.jtemb.2016.06.009.
  • [3] T.A. Devirian, S.L. Volpe. (2003).The Physiological Effects of Dietary Boron, Crit. Rev. Food Sci. Nutr. 43 219–231. https://doi.org/10.1080/10408690390826491. [4] S.S. Hakki, B.S. Bozkurt, E.E. Hakki. (2010). Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1), J. Trace Elem. Med. Biol. 24 243–250. https://doi.org/10.1016/j.jtemb.2010.03.003.
  • [5] R.L. Travers, G.C. Rennie, R.E. Newnham. (2010). Boron and Arthritis: The Results of a Double-blind Pilot Study, J. Nutr. Med. 1 127–132. https://doi.org/10.3109/13590849009003147.
  • [6] C.D. Hunt. (1998). Regulation of enzymatic activity, Biol. Trace Elem. Res. 66 205–225. https://doi.org/10.1007/BF02783139.
  • [7] C.D. Hunt, J.P. Idso. (1999). Dietary boron as a physiological regulator of the normal inflammatory response: A review and current research progress, J. Trace Elem. Exp. Med. 12 221–233. https://doi.org/10.1002/(SICI)1520-670X(1999)12:3<221::AID-JTRA6>3.0.CO;2-X.
  • [8] M.M. Ghartavol, S. Gholizadeh‐Ghaleh Aziz, G. Babaei, G. Hossein Farjah, M. Hassan Khadem Ansari. (2019). The protective impact of betaine on the tissue structure and renal function in isoproterenol‐induced myocardial infarction in rat, Mol. Genet. Genomic Med. 7 e00579. https://doi.org/10.1002/mgg3.579.
  • [9] S. Ince, I. Kucukkurt, H.H. Demirel, D.A. Acaroz, E. Akbel, I.H. Cigerci. (2014). Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats, Chemosphere. 108 197–204. https://doi.org/10.1016/j.chemosphere.2014.01.038.
  • [10] N. Akbari, A. Ostadrahimi, H. Tutunchi, S. Pourmoradian, N. Farrin, F. Najafipour, H. Soleimanzadeh, B. Kafil, M. Mobasseri. (2022). Possible therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19: A pilot randomized, double-blind, clinical trial, J. Trace Elem. Med. Biol. 71 126945. https://doi.org/10.1016/j.jtemb.2022.126945.
  • [11] J.M. Hunter, B. V. Nemzer, N. Rangavajla, A. Biţă, O.C. Rogoveanu, J. Neamţu, I.R. Scorei, L.E. Bejenaru, G. Rău, C. Bejenaru, G.D. Mogoşanu. (2019). The Fructoborates: Part of a Family of Naturally Occurring Sugar–Borate Complexes—Biochemistry, Physiology, and Impact on Human Health: a Review, Biol. Trace Elem. Res. 188 11–25. https://doi.org/10.1007/s12011-018-1550-4.
  • [12] I. Donoiu, C. Militaru, O. Obleagă, J.M. Hunter, J. Neamţu, A. Biţă, I.R. Scorei, O.C. Rogoveanu. (2018). Effects of boron-containing compounds on cardiovascular disease risk factors – A review, J. Trace Elem. Med. Biol. 50 47–56. https://doi.org/10.1016/j.jtemb.2018.06.003.
  • [13] F.H. Nielsen, Update on human health effects of boron. (2014). J. Trace Elem. Med. Biol. 28 383–387. https://doi.org/10.1016/j.jtemb.2014.06.023.
  • [14] R.E. Chapin, W.W. Ku, M.A. Kenney, H. McCoy. (1998). The effects of dietary boric acid on bone strength in rats, Biol. Trace Elem. Res. 66 395–399. https://doi.org/10.1007/BF02783150.
  • [15] Y. Güzel, U.H. Golge, F. Goksel, A. Vural, M. Akcay, S. Elmas, H. Turkon, A. Unver. (2016). The Efficacy of Boric Acid Used to Treat Experimental Osteomyelitis Caused by Methicillin-Resistant Staphylococcus aureus: an In Vivo Study, Biol. Trace Elem. Res. 173 384–389. https://doi.org/10.1007/s12011-016-0662-y.
  • [16] N. Başaran, Y. Duydu, M. Bacanlı, H. Gül Anlar, S.A. DİLSİZ, A. Üstündağ, C.Ö. Yalçın, T. Schwerdtle, H.M. Bolt. (2020). Evaluation of oxidative stress and immune parameters of boron exposed males and females, Food Chem. Toxicol. 142 111488. https://doi.org/10.1016/j.fct.2020.111488.
  • [17] M.R. Naghii, M. Mofid, A.R. Asgari, M. Hedayati, M.-S. (2011). Daneshpour, Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines, J. Trace Elem. Med. Biol. 25 54–58. https://doi.org/10.1016/j.jtemb.2010.10.001.
  • [18] U. Acaroz, S. Ince, D. Arslan-Acaroz, Z. Gurler, I. Kucukkurt, H.H. Demirel, H.O. Arslan, N. Varol, K. Zhu. (2018). The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats, Food Chem. Toxicol. 118 745–752. https://doi.org/10.1016/j.fct.2018.06.029.
  • [19] E. Jin, M. Ren, W. Liu, S. Liang, Q. Hu, Y. Gu, S. Li. (2017) . Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway, J. Agric. Food Chem. 65 11280–11291. https://doi.org/10.1021/acs.jafc.7b04069.
  • [20] K.F. McCarty, M.J. Mills, D.L. Medlin, T.A. Friedmann. (1994). Comment on ‘“Growth and characterization of epitaxial cubic boron nitride films on silicon,”’ Phys. Rev. B. 50 8907–8910. https://doi.org/10.1103/PhysRevB.50.8907.
  • [21] M.J. Olszta, X. Cheng, S.S. Jee, R. Kumar, Y.-Y. Kim, M.J. Kaufman, E.P. Douglas, L.B. Gower. (2007). Bone structure and formation: A new perspective, Mater. Sci. Eng. R Reports. 58 77–116. https://doi.org/10.1016/j.mser.2007.05.001.
  • [22] S. Bin Oh, W.Y. Lee, H.-K. Nam, Y.-J. Rhie, K.-H. Lee. (2019). Serum osteocalcin levels in overweight children, Ann. Pediatr. Endocrinol. Metab. 24 104–107. https://doi.org/10.6065/apem.2019.24.2.104.
  • [23] S.S. El-Tawab, E.K.A. Saba, H.M.T. Elweshahi, M.H. Ashry. (2016). Knowledge of osteoporosis among women in Alexandria (Egypt): A community based survey, Egypt. Rheumatol. 38 225–231. https://doi.org/10.1016/j.ejr.2015.08.001.
  • [24] C. De Fusco, A. Messina, V. Monda, E. Viggiano, F. Moscatelli, A. Valenzano, T. Esposito, C. Sergio, G. Cibelli, M. Monda, G. Messina. (2017). Osteopontin: Relation between Adipose Tissue and Bone Homeostasis, Stem Cells Int. 2017 1–6. https://doi.org/10.1155/2017/4045238.
  • [25] O. Boyacioglu, S. Orenay-Boyacioglu, H. Yildirim, M. Korkmaz. (2018). Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis, J. Trace Elem. Med. Biol. 48 52–56. https://doi.org/10.1016/j.jtemb.2018.03.005.
  • [26] C.D. Seaborn, F.H. Nielsen. (1994). Boron and silicon: Effects on growth, plasma lipids, urinary cyclic amp and bone and brain mineral composition of male rats, Environ. Toxicol. Chem. 13 941–947. https://doi.org/10.1002/etc.5620130613.
  • [27] D. Zhu, A.R. Ansari, K. Xiao, W. Wang, L. Wang, W. Qiu, X. Zheng, H. Song, H. Liu, J. Zhong, K. Peng. (2021). Boron Supplementation Promotes Osteogenesis of Tibia by Regulating the Bone Morphogenetic Protein-2 Expression in African Ostrich Chicks, Biol. Trace Elem. Res. 199 1544–1555. https://doi.org/10.1007/s12011-020-02258-w.
  • [28] Y.-J. Liu, W.-T. Su, P.-H. Chen. (2018). Magnesium and zinc borate enhance osteoblastic differentiation of stem cells from human exfoliated deciduous teeth in vitro, J. Biomater. Appl. 32 765–774. https://doi.org/10.1177/0885328217740730.
  • [29] X. Ying, S. Cheng, W. Wang, Z. Lin, Q. Chen, W. Zhang, D. Kou, Y. Shen, X. Cheng, F.A. Rompis, L. Peng, C. zhu Lu. (2011). Effect of Boron on Osteogenic Differentiation of Human Bone Marrow Stromal Cells, Biol. Trace Elem. Res. 144 306–315. https://doi.org/10.1007/s12011-011-9094-x.