Grafit/PTFE destekli bor takviyeli çinko oksit elektrot üretimi ve borun süper kapasitör performansına etkisi

Bu çalışmada, bor katkılı çinko oksit (ZnO:B) parçacıklar hidrotermal yöntem ile çinko nitrat hekzahidrat (Zn(NO3)2.6H2O) öncü çözeltisi kullanılarak üretilmiştir. ZnO:B tozlarının sentezinde bor ağırlıkça %5, %10, %15 ve %20 oranlarında katkılanmıştır. Üretilen ZnO:B yapıların fiziksel karakterizasyonu X-ışını kırınımı (XRD) ve taramalı elektron mikroskopu (SEM) ile gerçekleştirilmiştir. Analiz sonuçlarından ZnO:B parçacıkların hekzagonal würtzide yapıda kristalleştiğini ve morfolojik yapılarının hekzagonal çubuk şeklinde olduğu gözlenmiştir. ZnO:B elektrotlar; %10 poli tetra florin etilen (PTFE), %20 iletken grafit ile %70 ZnO:B tozları karıştırılarak Ni köpük üzerine 1 cm2’ lik alan oluşturacak şekilde hazırlanmıştır. ZnO:B elektrotların kapasitans ölçümleri döngüsel voltametrisi (CV) yöntemi ile yapılmıştır. Ölçümler oda sıcaklığında gerçekleştirilip, elektrolit sıvısı olarak 6M KOH çözeltisi kullanılmıştır. Farklı bor oranlarında hazırlanan ZnO:B elektrotların elektrokimyasal özellikleri araştırılmıştır. Üretilen ZnO:B elektrotlarında bor konsantrasyonu arttıkça kapasitans değerlerinin sistematik bir şekilde arttığı gözlemlenmiştir. Ayrıca %20 bor katkılı ZnO parçacıklar kullanılarak elde edilen elektrotun maksimum spesifik kapasitans değerine (29,41 F/g) ulaştığı ve katkısız ZnO elektrota göre 5 kat daha iyi performans sağladığı gözlemlenmiştir.

Production of Boron Doped Zinc Oxide Electrode Using Zinc Nitrate Hexahydrate and Effect on Supercapacitor Performance

In this study, boron doped zinc oxide (ZnO:B) particles were produced by hydrothermal method using zinc nitrate hexahydrate (Zn(NO3)2.6H2O) precursor solution. In the synthesis of ZnO:B powders, boron was added at 5%, 10%, 15% and 20% by weight. Physical characterization of the produced ZnO:B structures was performed by X-ray diffraction (XRD) and scanning electron microscope (SEM). From the results of the analysis, it was observed that the ZnO:B particles crystallized in the hexagonal würtzide structure and their morphological structures were in the form of hexagonal rods. ZnO:B electrodes were prepared by mixing 10% poly tetra fluorine ethylene (PTFE), 20% conductive graphite and 70% ZnO:B powders to form an area of 1 cm2 on Ni foam. Capacitance measurements of ZnO:B electrodes were made by Iviumstat potentiostat/galvanostat cyclic voltammetry using a three-electrode arrangement. Measurements were made at room temperature and 6M KOH solution was used as the electrolyte liquid. The electrochemical properties of ZnO:B electrodes prepared at different boron ratios were investigated by examining the capacitance, impedance and charging/discharging curves. It was observed that the capacitance values of the produced ZnO:B electrodes increased systematically as the boron concentration increased. In addition, it has been observed that the electrode obtained by using 20% boron doped ZnO particles reaches the maximum specific capacitance value (29.41 F/g) and provides five-fold better performance than the undoped ZnO electrode.

___

  • [1] Han R., Liu F., Wang X., Huang M., Li W., Yamauchi Y., Sun X. & Huang Z. (2020). Functionalised hexagonal boron nitride for energy conversion and storage. J. Mater. Chem. A, 8(29), 14384–14399. doi: 10.1039/d0ta05008c.
  • [2] Zhu Y., Gao S., & Hosmane N. S. (2017). Boron-enriched advanced energy materials. Inorganica Chimica Acta, 471, 577–586. doi: 10.1016/j.ica.2017.11.037.
  • [3] Jin j., Geng X., Chen Q. & Ren T.L. ( 2022) A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors, 14(1) Springer Singapore,.
  • [4] Zhang X., Cao L., Liao Y., Qin Z., Yang Z., Sun R., Zhang W., Li H. & Yan G. (2022) Design of hierarchical porous carbon nanofibrous membrane for better electrochemical performance in solid-state flexible supercapacitors,” Journal of Alloys Compounds. 920, 165983. doi: 10.1016/j.jallcom.2022.165983.
  • [5] Mandal M. Subudhi S., Nayak A. K., Alam I., Subramanyam B.V.R.S., Maheswari R. P., Patra S., Mahanandia P.(2022). In-situ synthesis of mixed-phase carbon material using simple pyrolysis method for high-performance supercapacitor. Diamond & Related Materials, 127, 109209, doi: 10.1016/j.diamond.2022.109209.
  • [6] Biancolli A. L. G., Bsoul-Haj S., Douglin J. C., Barbosa A. S., Sousa R. R., Rodrigues O., Lanfredi A. J. C. , Dekel D. R. , Santiago E. I.(2021). High-performance radiation grafted anion-exchange membranes for fuel cell applications: Effects of irradiation conditions on ETFE-based membranes properties, Journal of Membrane Science. 641 (2022) 119879. doi: 10.1016/j.memsci.2021.119879.
  • [7] Shaheen I., Ahmad K. S., Zequine C., Gupta R.K., Thomas A. G. & Malik M. A.(2021). Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. Royal Society of Chemistry, 11(38), 23374–23384 doi: 10.1039/d1ra04341b.
  • [8] Pettong T., Iamprasertkun P., Krittayavathananon A., Suktha P., Sirisinudomkit P., Seubsai A., Chareonpanich M., Kongkachuichay P., Limtrakul J. & Sawangphruk M.(2016). High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel. . ACS Applied Materials & Interfaces, 8(49), 34045–34053. doi: 10.1021/acsami.6b09440.
  • [9] Titirici M. M. & Antonietti M. (2010). Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 39(1), 103–116. doi: 10.1039/b819318p.
  • [10] Lai X., Halpert J. E. & Wang D. (2012). Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems,” Energy Environmental Science, 5(2) 5604–5618. doi: 10.1039/c1ee02426d.
  • [11] Deng J., Li M. & Wang Y.(2016). Biomass-derived carbon: Synthesis and applications in energy storage and conversion,” Green Chemistry, 18(18), 4824–4854. doi: 10.1039/c6gc01172a.
  • [12] Pallavolu M. R., Nallapureddy J., Nallapureddy R. R., Neelima G., Yedluri A. K., Mandal T. K., Pejjai B., & Joo S. W. (2021). Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors. Journal of Alloys and Compounds, 886,161234, doi: 10.1016/j.jallcom.2021.161234.
  • [13] Eftekhari A., Molaei F. & Arami H. (2006). Flower-like bundles of ZnO nanosheets as an intermediate between hollow nanosphere and nanoparticles, Materials Science and Engineering, 437(2) 446–450. doi: 10.1016/j.msea.2006.08.033.
  • [14] Shen G., Chen D. & Lee C.J. (2006). Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces. The Journal of Physical Chemistry B, 110(32), 15689–15693, doi: 10.1021/jp0630119.
  • [15] Zhang B.P., Binh N. T., Wakatsuki K. & Segawa Y. (2004). Formation of highly aligned ZnO tubes on sapphire (0001) substrates. Applied Physics Letters, 84(20), 4098–4100. doi: 10.1063/1.1753061.
  • [16] Kim C. H. & Kim B. H. (2015). Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. Journal of Power Sources, 274, 512–520, doi: 10.1016/j.jpowsour.2014.10.126.
  • [17] Aravinda L. S., Nagaraja K. K., Nagaraja H. S., Bhat K. U. & Bhat B. R. (2013). ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochimica Acta, 95, 119–124, doi: 10.1016/j.electacta.2013.02.027.
  • [18] Selvakumar M., Bhat D. K., Aggarwal A. M., Iyer S. P. & Sravani G. (2010). Nano ZnO-activated carbon composite electrodes for supercapacitors. Physica B Condensed Matter, 405(9), 2286–2289. doi: 10.1016/j.physb.2010.02.028.
  • [19] Wang R., Li X., Nie Z., Zhao Y. & Wang H. (2021). Metal/Metal Oxide Nanoparticles-Composited Porous Carbon for High-Performance Supercapacitors. Journal of Energy Storage, 38,102479. doi: 10.1016/j.est.2021.102479.
  • [20] Hosseini S. M., Sarsari I. A., Kameli P. & Salamati H. (2015). Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. Journal of Alloys and Compounds, 640, 408–415. doi: 10.1016/j.jallcom.2015.03.136.
  • [21] Angelin M. D., Rajkumar S., Merlin J. P., Xavier A. R., Franklin M. & Ravichandran A. T. (2020) Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor,” Ionics (Kiel), 26(11), 5757–5772. doi: 10.1007/s11581-020-03681-8.
  • [22] Rashid A. R., Abid A. G., Manzoor S., Mera A., Al-Muhimeed T. I., AlObaid A. A., Shah S. N., Ashiq M. N., Imran M. & Najam-Ul-Haq M. (2021). Inductive effect in Mn-doped ZnO nanoribon arrays grown on Ni foam: A promising key for boosted capacitive and high specific energy supercapacitors. Ceramics International, 47(20), 28338–28347. doi: 10.1016/j.ceramint.2021.06.251.
  • [23] Reddy I. N., Reddy C. V., Sreedhar A., Shim J., Cho M., Yoo K. & Kim D. (2018). Structural, optical, and bifunctional applications: Supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. Journal of Electroanalytical Chemistry, 828, 124–136, doi:10.1016/j.jelechem.2018 .09.048.
  • [24] Angelin M. D., Rajkumar S., Ravichandran A. T. & Merlin J. P. (2022). Systematic investigation on the electrochemical performance of Cd-doped ZnO as electrode material for energy storage devices, Journal of Physics and Chemistry of Solids, 161, 110486. doi: 10.1016/j.jpcs.2021.110486.
  • [25] Dutta A., Chatterjee K., Mishra S., SahaS. K. & Akhtar A. J. (2022). An insight into the electrochemical performance of cobalt ‑ doped ZnO quantum dot for supercapacitor applications,” Journal of Materials Research, doi: 10.1557/s43578-022-00654-7.
  • [26] Samuel A. J., Deepi A., Srikesh G. & Nesaraj A. S. (2020). Development of two-dimensional Mg doped ZnO nano hybrids as electrode materials for electrochemical supercapacitor applications,” Rasayan Journal of Chemistry, 13(1), 562–569. doi: 10.31788/RJC.2020.1315528.
  • [27] Imoisili P. E. & Safaei B. (2021). Microwave - assisted sol – gel synthesis of TiO 2 - mixed metal oxide nanocatalyst for degradation of organic pollutant. Nanotechnology Reviews, 10,126–136.
  • [28] Sharma S. K., Gupta R., Sharma G., Vemula K., Koirala A. R., Kaushik N. K., Choi E. H., Kim D. Y., Purohit L. P. & Singh B. P. (2021). Photocatalytic performance of yttrium-doped CNT-ZnO nanoflowers synthesized from hydrothermal method. Materials Today Chemistry, 20,100452, doi: 10.1016/j.mtchem.2021.100452.
  • [29] Skorupska M., Ilnicka A. & Lukaszewicz J. P. (2021). N-doped graphene foam obtained by microwave-assisted exfoliation of graphite. Scientifc Reports, 11(1), 1–11. doi: 10.1038/s41598-021-81769-5.
  • [30] Wang Z. L., Li G. R., Ou Y. N., Feng Z. P., Qu D. L. & Tong Y. X. (2011). Electrochemical deposition of Eu3+-doped CeO2 nanobelts with enhanced optical properties. Journal of Physical Chemistry C, 115(2), 351–356. doi: 10.1021/jp1070924.
  • [31] Hessien M., Da’na E. & Taha A. (2021). Phytoextract assisted hydrothermal synthesis of ZnO–NiO nanocomposites using neem leaves extract. Ceramics International, 47(1),811–816, doi: 10.1016/j.ceramint.2020.08.192.
  • [32] Singh N. & Haque F. Z.(2016). Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique. Optik (Optics), 127(1),174–177. doi: 10.1016/j.ijleo.2015.09.024.
  • [33] Senol S. D., Ozturk O. & Terzioğlu C. (2015). Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceramics International, 41(9), 11194–11201. doi: 10.1016/j.ceramint.2015.05.069.