Bor içeren dolgu maddelerinin huntit hidromagnezit içeren sünek PLA biyokompozitlerde alev geciktirici özelliklerine etkisi

Bu çalışmada, Huntit-hidromanyezit (HH) içeren poli (laktik asit) (PLA) biyokompozitlerinde kolemanit ve bor oksidin alev geciktirici etkileri araştırılmıştır. Kompozitler, sınırlayıcı oksijen indeksi (LOI), yatay (UL 94 HB) ve dikey (UL-94 V) yanma testleri, kütle kaybı kalorimetresi ve termo gravimetrik analiz (TGA) kullanılarak karakterize edilmiştir. Kolemanit ilavesi ile daha yüksek UL-94 V derecesi, LOI değeri ve daha düşük pHRR değeri ile alev geciktirici performasında iyileşmeye neden olmuştur. V0 derecesi ve en yüksek LOI değeri, ağırlıkça %1 kolemanit ilavesinde görülmüştür. Kolemanit konsantrasyonu ağırlıkça %3 ve %5 olduğunda numunelerde V1 derecesi elde edilmiştir. Kolemanit konsantrasyonu ağırlıkça %5'e ulaştığında, pHRR ve avHRR değerleri referans numunenin değerlerinden daha düşük çıkmıştır. Bor oksit ilavesi sadece LOI değerinde iyileşmeye neden olmuştur. En yüksek LOI değeri (33,2) ağırlıkça %5 ve %10 bor oksit içeren numunelerde görülmüştür.

Influence of boron bearing fillers on flame retardancy properties of huntite hydromagnesite filled ductile PLA biocomposites

In this work, the flame retardant influences of colemanite and boron oxide are investigated in huntite-hydromagnesite (HH) containing plasticized poly (lactic acid) (PLA) biocomposites. The composites are characterized using limiting oxygen index (LOI), horizontal (UL 94 HB) and vertical (UL-94 V) burning tests, mass loss calorimeter and thermo gravimetric analysis (TGA). The addition of colemanite causes enhanced fire retardant performance with higher UL-94 V rating and LOI value and lower pHRR value. V0 rating and the highest LOI value is observed with the addition 1 wt % colemanite. When the concentration of colemanite reaches to 3 and 5 wt %, the samples get V1 rating. When the concentration of colemanite reaches to 5 wt %, pHRR and avHRR values are lower than those of the reference sample. The addition of boron oxide caused only improvement in LOI value. The highest LOI value (33.2) is observed in 5 and 10 wt % boron oxide containing samples.

___

  • Shen, K.K. (2014). Non-Halogenated Flame Retardant Handbook. Boron-Based Flame Retardants in Non-Halogen-Based Polymers (pp.201-241). Scrivener Publishing LLC.
  • Wilkie, C, A., & Morgan, A. B. (2009). Fire Retardancy of Polymeric Materials. (2nd Ed.) CRC Press. ISBN 1420084003, 9781420084009.
  • Shen K. K. (2014). Polymer Green Flame Retardants, Review of Recent Advances on The Use of Boron-Based Flame Retardants ( pp. 367-388). Elsevier.
  • Shen, K. K., Kochesfahani, S., & Jouffret, F. (2008). Zinc borates as multifunctional polymer additives. Polymers for Advanced Technologies, 19(6), 469-74.
  • Bourbigot, S., Le Bras, M., Leeuwendal, R., Shen, K. K, & Schubert, D. (1999). Recent advances in the use of zinc borates in flame retardancy of EVA. Polymer Degratadion and Stability, 64, 419-425.
  • Riyazuddin, Rao, T. N., Hussain, I., & Koo, B. H. (2020). Effect of aluminum tri-hydroxide/zinc borate and aluminum tri-hydroxide/melamine flame retardant systems synergies on epoxy resin. Materials Today: Proceedings, 27(3), 2269-2272.
  • Ramazani, S. A, A., Rahimi, A., Frounchi, M., & Radman, S. (2008). Investigation of flame retardancy and physical mechanical properties of zinc borate and aluminum hydroxide propylene composites. Materials and Design, 29(5), 1051-1056.
  • Carpentier, F., Bourbigot, S., Le Bras, M., & Delobel, R. (2000). Rheological investigations in fire retardancy: application to ethylene-vinyl-acetate copolymer-magnesium hydroxide/zinc borate formulations. Polymer International, 49, 1216-1221.
  • Basfar, A. A. (2003). Effect of various combinations of flame-retardant fillers on flammability of radiation cross-linked poly(vinyl chloride) (PVC). Polymer Degradation and Stability, 82, 333-340.
  • Pi, H., Guo, S., & Ning, Y. (2003). Mechanochemical improvement of the flame retardant and mechanical properties of zinc borate and zinc borate-aluminum trihydrate filled poly(vinyl chlolride). Journal of Applied Polymer Science, 89, 753-762.
  • Sanchez-Olivares, G., Sanchez-Solis, A., Calderas, F., Medina-Torres, L., Herera-Valencia, E. E., Castro-Aranda, J. I., Manero, O., Di Blasio, A., & Alongi, J. (2013). Flame retardant high density polyethylene optimized by on-line ultrasound extrusion. Polymer Degradation and Stability, 98(11), 2153-2160.
  • Ye, L., Miao, Y., Yan, H., Li, Z., Zhou, Y., Liu, J., & Liu, H. (2013). The synergistic effects of boroxo siloxanes with magnesium hydroxide in halogen free flame retardant EVA/MH blends. Polymer Degradation and Stability, 98(4), 868-874.
  • Sain, M., Park, S. H., Sahura, F., & Law S. (2004). Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83, 363-367.
  • Hollingbery, L., & Hull, T. (2010). The thermal decomposition of huntite and hydromagnesite-A review. Thermochimica Acta, 509(1), 1-11.
  • Hollingbery, L., & Hull, T. (2010). The fire retardant behaviour of huntite and hydromagnesite–A review. Polymer Degradation and Stability, 95(12), 2213-2225.
  • Hull, T. R., Witkowski, A., & Hollingbery, L. (2011). Fire retardant action of mineral fillers. Polymer Degradation and Stability, 96(8), 1462-1469.
  • Savas, L. A., Deniz, T. K., Tayfun, U., & Dogan M. (2017). Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite & hydromagnesite mineral. Polymer Degradation and Stability, 135, 121-129.
  • Guler, T., Tayfun, U., Bayramlı, E., & Dogan, M. (2017). Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite & hydromagnesite mineral. Thermochimica Acta, 647, 70-80.
  • Dike, A. S., Tayfun, U., & Dogan, M. (2017). Influence of zinc borate on flame retardant and thermal properties of polyurethane elastomer composites containing huntite-hydromagnesite mineral. Fire and Materials, 41, 890-897.
  • Ustaömer, D., & Baser, U. E. (2020). Thermal and fire properties of medium-density fiber board prepared with huntite/hydromagnesite and zinc borate. Biosources, 15, 5940-5950.
  • Atay, H. Y., & Celik, E. (2016). Flame retardant properties of boric acid and antimony oxide accompanying with huntite and hydromagnesite in the polymer composites. Polymers & Polymer Composites, 24, 419-428.
  • Toure, B., Lopez-Cuesta, J. M., Gaudon, P., Benhassaine, A., & Crespy, A. (1996). Fire resistance and mechanical properties of a huntite/hydromagnesite/antimony trioxide/decabromodiphenyl oxide filled PP-PE copolymer. Polymer Degradation and Stability, 53, 371-379.
  • Yurddaskal, M., Nil, M., Ozturk, Y., & Celik E. (2018). Synergetic effect of antimony trioxide on the flame retardant and mechanical properties of polymer composites for consumer electronics applications. Journal of Materials Science: Materials in Electronics, 29, 4557-4563.
  • Erdem, A., & Dogan M. (2020). Production and characterization of green flame retardant poly(lactic acid) composites. Journal of Polymers and the Environment, 28, 2837-2850.
  • Unlu, S. M., Dogan, S. D., & Dogan, M. (2014). Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polymer Advanced Technologies, 25, 769-776.
  • Terzi, E., Kartal, S, N., Piskin, S, Stark, N., Figen A. K., & White R. H. (2018). Colemanite: a fire retardant candidate for wood plastic composites. Bioresources, 13, 1491-1509.
  • Ostman, B. A. L. (1984). Fire retardant wood fiber insulating board. Journal of Fire Sciences, 2, 454-467.
  • Terzi, E. (2018). Thermal degradation of particle boards incorporated with colemanite and common boron based fire retardants. Bioresorces, 13, 4239-4251.
  • Zhong, J., Cui, Y., Zhu, J., & Wang, H. (2016). Preparation and application of colemanite matrix complex flame retardant. Materials Science Forum, 852, 670-676.
  • Kaynak, C., & Isıtman, N. A. (2011). Synergistic fire retardancy of colemanite, a natural hydrated calcium borate, in high-impact polystyrene containing bominated epoxy and antimony oxide. Polymer Degradation and Stability, 96, 798-807.
  • Atikler, U., Demir, H., Tokatlı, F., Tıhmınlıoglu, F., Balkose, D., & Ulku, S. (2006). Optimisation of the effect of colemanite as a new synergistic agent in an intumescent system. Polymer Degradation and Stability, 91, 1563-1570.
  • Cavodeau, F., Viretto A., Otazaghine B., Lopez Cuesta, J. M., & Delaite, C. (2017). Influence of colemanite on the fire retardancy of ethylene-vinyl acetate and ethlene-methyl acrylate copolymers. Polymer Degradation and Stability, 144, 401-410.
  • Isıtman, N. A., & Kaynak, C. (2012). Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low density polyethylene. Journal of Fire Sciences, 31, 73-84.
  • Borazan, A. A., & Gokdai, D. (2018). Pine cone and boron compounds effect as reinforcement on mechanical and flammability properties of polyester composites. Open Chemistry, 16, 427-436.
  • Polat, O., & Kaynak, C. (2016). Use of boron oxide and boric acid to improve flame retardancy of an organophosphorus compound in neat and fiber reinforced polyamide 6. Journal of Vinyl Additive Technology, 22, 300-310.
  • Tang, S., Qian, L., Qiu, Y., & Dong, Y. (2018). Synergistic flame retardant effect and mechanisms of boron/phosphorus compounds on epoxy resins. Polymers for Advanced Technologies, 29, 641-648.
  • Ibibikcan, E., & Kaynak, C. (2014). Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials. Journal of Fire Sciences, 32, 99-120.
  • Frost, R. L., Scholz, R., Ruan, X., & Lima, R. (2016). Thermal Analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3.H2O). Journal of Thermal Analysis and Calorimetry, 124, 131-135.
  • Zarenezhad, B. (2003). Production of crystalline boric acid through the reaction of colemanite particles with propionic acid. Developments in Chemical Engineering and Mineral Processing, 11, 363-380.
  • Alkan, M., & Dogan, M. (2004). Dissolution kinetics of colemanite in oxalic acid solutions. Chemical Engineering and Processing: Process Intensification, 43, 867-872.
  • Kopinke, F. D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polymer Degradation Stabilty, 53(3), 329-342.
  • Westphal, C., Perrot, C., & Karlsson, S. (2001). Py-GC/MS as a means to predict degree of degradation by giving microstructural changes modelled on LDPE and PLA. Polymer Degradation Stabilty, 73, 281-287.
  • Wang, M., Wu, Y., Li, Y.D., & Zeng, J. B. (2017). Progress in toughening poly (lactic acid) with renewable polymers. Polymer Reviews, 57, 557-593.
  • Krishnan, S., Pandey, P., Mohanty, S., & Nayak, S. K. (2016). Toughening of poly lactic acid: an overview of research progress. Polymer Plastics Technology and Engineering, 55, 1623-1652.
  • Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Material Chemistry A, 1, 13379-13398.
  • Qian, Y., Zhou S., & Chen, X. (2017). Flammability and thermal degradation behavior of ¬vinyl acetate/layered double hydroxides/zinc borate composites. Polymers for advanced technologies, 28, 353-361.