Hint Yağı, Çörekotu Yağı ve Kayısı Yağının Antimikrobiyal Özelliklerinin Belirlenmesi

Bitkisel yağların ve türevlerinin antibakteriyel aktiviteleri birkaç yıldır araştırılmaktadır; ancak antimikrobiyal direncin gelişmesiyle ilgili artan endişeler nedeniyle patojenik mikroorganizmaları yok etmek ve alternatif stratejiler geliştirmek için daha fazla çalışmaya ihtiyaç vardır. Bu çalışmada amacımız, ticari olarak temin edilebilen üç farklı bitkisel yağın bakteri suşları üzerindeki minimum inhibitör konsantrasyon (MİK)’ larının belirlenmesidir. Bakteriler (standart ATCC suşları) üzerindeki antibakteriyel aktiviteleri belirlemek için ticari olarak temin edilen çörekotu yağı, hint yağı ve kayısı yağı olmak üzere üç bitkisel yağ kullanılmıştır. Gram-negatif bakterilerden Escherichia coli, fermente olmayan bakterilerden Acinetobacter baumannii, Pseudomonas aeuriginosa Gram pozitif bakterilerden Staphylococcus aureus seçilmiştir. Bitkisel yağların etkili MİK değerleri resazurin mikrotiter assay plate (REMA) tekniği kullanılarak tespit edildi. Tüm bitkisel yağlar, farklı konsantrasyonlarda standart bakteri suşları üzerinde etkili olmuştur. Bitkisel yağların her bir bakteri üzerindeki etkili konsantrasyon aralıkları aşağıdaki gibidir; Pseudomonas aeruginosa (ATCC 27853) için 125-500 μg/ml, Acinetobacter baumannii (ATCC 49139) için 250 μg/ml, Staphylococcus aureus (ATCC 29213) için 250 μg/ml, Escherichia coli (ATCC 25923) için 250 μg/ml. Sonuç olarak, bu çalışmada antimikrobiyal ajanlara karşı yaygın direnç nedeniyle daha zor hale gelen patojen mikroorganizmaların inhibisyonuna alternatif çözümler sunan bazı bitkisel yağların antimikrobiyal kapasiteleri değerlendirilmiştir. Bu çalışmanın bitkisel yağların antimikrobiyal etki mekanizmalarının belirlenmesi ile ilgili diğer çalışmalara katkı sağlayacağına inanıyoruz.

Determination of Antimicrobial Properties of Castor Oil, Black Cumin Oil and Apricot Oil

The antibacterial activities of herbal oils and their derivatives have been studied for several years; however, more studies are needed to develop alternative strategies to destroy pathogenic Microorganisms due to increasing concerns about the development of antimicrobial resistance amongst them. In this study, our aim was to investigate the minimal inhibitory concentrations (MIC) of 3 different commercially available herbal oils on bacteria strains). Three commercially available herbal oils, including black cumin, castor, apricot oil etc. were used to determine the antibacterial activities of bacteria (standard ATCC strains). Escherichia coli from Gram-negative bacteria, Acinetobacter baumannii, Pseudomonas aeuriginosa from non-fermentative bacteria, and Staphylococcus aureus from Gram-positive bacteria were selected. The effective MIC values of herbal oils were detected by using the resazurin microtiter assay plate (REMA) technique. All herbal oils were effective on standard bacteria strains in different concentrations. The effective concentration ranges of herbal oils on each bacteria were as follows; 125-500 μg/ ml for Pseudomonas aeruginosa (ATCC 27853), 250 μg/ ml for Acinetobacter baumannii (ATCC 49139), 250 μg/ml for Staphylococcus aureus (ATCC 29213), 250 μg/ml for Escherichia coli (ATCC 25923). In conclusion, the antimicrobial capacities of some herbal oils that provide alternative solutions to pathogen microorganisms inhibition, which are made more difficult due to widespread resistance to antimicrobial agents, were evaluated in this study. We believe that this study will contribute to other related studies on the identification of herbal oil antimicrobial mechanisms of action.

___

  • Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar F. 2015. Essential oils used in aromatherapy: A systemic review. Asian Pacific J Tropl Biomed, 5(8): 601-611.
  • Al-Juhaiman AM, Abbas FA. 2015. Antimicrobial activity of Nigella sativa oil against gram-positive bacteria, gram-negative bacteria, and yeast. J King Saud Univ Sci, 27(2): 134-137.
  • Burt S. 2004. Essential oils: their antimicrobial properties and potential application in foods-a review. Int J Food Microbiol, 94: 223-253.
  • Celiktas OY, Kocabas EEH, Bedir E, Sukan FV, Ozek T, Baser KHC. 2006. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem, 100: 553-559.
  • Hosseinzadeh H, Nassiri-Asl M, Parvardeh S. 2015. The effects of Carum copticum L. (Caraway) oleoresin on serum lipids, lipoproteins and glucose levels in diabetic rats. J Complement Integrat Medic, 12(2): 165-171.
  • Hussain AI, Anwar F, Sherazi STH, Przybylski R. 2008. Chemical composition: Antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem, 108: 986-995
  • Khalid MH, Al-Qudah MA, Abdul-Rahman MK. 2020. Antimicrobial activity of black cumin oil (Nigella sativa) against some pathogenic microorganisms. Jordan J Biol Sci, 13(1): 11-18.
  • Khan MS, Ahmad I, Afzal M. 2016. Antibacterial effect of Carum copticum against resistant clinical isolates of Escherichia coli and Klebsiella pneumoniae. J Taibah Univ Medic Sci, 11(3): 272-277.
  • Man A, Santacroce L, Iacob R, Mare A, Man L. 2019. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens, 8(1): 15.
  • Maurice MI, Angela RD, Chiris OO. 1990. New antimicrobials of plant origin. Persp New Crops New Uses, 8: 457-460.
  • Nateche F, Martin A, Baraka S, Palomino J C, Khaled S, Portaels F. 2006. Application of the resazurin microtitre assay for detection of multidrug resistance in Mycobacterium tuberculosis in Algiers. J Med Microbiol, 55: 857-860.
  • Prabuseenivasan S, Jayakumar M, Ignacimuthu S. 2006. In vitro antibacterial activity of some plant Essential oils. Biomed Cent, 6: 39-45.
  • Rath CC, Devi S, Dash SK, Mishra RK, Behera BC. 2012. Essential oil composition, antimicrobial and antioxidant activities of Piper betle L. and Piper nigrum L. essential oils and their major constituents. Indian J Pharmaceut Sci, 74(5): 443-450.
  • Saeed S, Tariq P. 2008. In-vitro antibacterial activity of clove against Gram negative bacteria. Pak J Bot, 40: 2157-2160.
  • Salem EM, Yar T, Bamosa AO. 2014. Comparative study of the antibacterial activity of Nigella sativa L. and wild mint (Mentha longifolia L.) plant extracts. Middle-East J Sci Res, 19(5): 693-698.
  • Scarpa A, Guerci A. 1982. Various uses of the castor oil plant (Ricinus communis L.) a review. J Ethnopharmacol, 5(2): 117-137.
  • Singh R, Shushni MAM, Belkheir A. 2011. Antibacterial and antioxidant activities of Mentha piperita L. Arabian J Chem, 4(3): 293-298.
  • Sokmen M, Serkedjieva J, Daferera D, Gulluce M, Polissiou M, Tepe B, Akpulat HA, Sokmen A. 2004 In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem, 52: 3309-3312.