Zeytin Karasuyunun Anaerobik Arıtılabilirliği ve Biyogaz Üretim Potansiyelinin Araştırılması

Zeytinyağı üretim fabrikalarında zeytin karasuyunun anaerobik olarak arıtılması hem biyogaz üretimi hem de sürdürülebilir çevre için umut verici bir yöntemdir. Bununla birlikte zeytinyağı fabrikalarının dönemsel çalışıyor olması bir dezavantaj gibi görünse de geniş zaman imkanı ile yüksek organik yüke sahip olan zeytin karasuyunun gerekli seyreltme ve baz ilavesi gibi ön işlemler ile arıtılması mümkündür. Bu çalışmada, yaklaşık 78000 mg/L KOİ konsantrasyonuna sahip ham zeytin karasuyu yaklaşık 1/8 oranında musluk suyu ile seyreltilerek 6,15 L aktif hacme sahip yukarı akışlı havasız çamur yataklı anaerobik reaktörde mezofilik şartlarda (37±0,5 °C) arıtılmıştır. Deneysel çalışma esnasında zeytin karasuyunun fiziksel ve kimyasal yapısından kaynaklanabilecek olumsuzlukların önüne geçerek gerekli mikroorganizma adaptasyonunun sağlanabilmesi için 39 günlük bir kesikli besleme süreci ile proses deneysel çalışmaya hazırlanmıştır. Hidrolik besleme süresinin 10 gün organik yükleme oranının 1 kg KOİ/m3 /gün olduğu anaerobik proses 32 gün boyunca yarı sürekli olarak beslenmiştir. Düşük alkaliniteye sahip olduğu için 615 mL seyreltilmiş zeytin karasuyunun (10000 mg KOİ/L) anaerobik arıtımı 1N 12 mL NaOH ilavesi ile pH 6,8-7,2 aralığında gerçekleştirilmiştir. Çalışmanın sonunda %75,6 (±14,2) KOİ giderimi ile birlikte 2177 (± 279) mL/gün biyogaz üretiminin gerçekleştiği tespit edilmiştir. Anaerobik arıtma, seyreltilerek alkalinite takviyesi yapılmış olan zeytin karasuyundan KOİ giderimi ve biyogaz üretimi için sürdürülebilirlik açısından ve çevresel olarak dikkate alınması gereken bir prosestir.Anahtar kelimeler: Zeytin Karasuyu, Anaerobik Arıtma, KOİ Giderimi, Biyogaz Üretimi.

Investigation of Anaerobic Treatability and Biogas Production Potential of Olive Mill Wastewater

Anaerobic treatment of olive mill wastewater in olive oil production plants is a promising method for both biogas production and environmental sustainability. Moreover, it is possible to treat the olive mill wastewater which has high organic load with the opportunity of wide time, with the necessary dilution and base adding, although it seems to be a disadvantage that the olive oil mills operate seasonally. In this study, raw olive mill wastewater with a COD concentration of approximately 78000 mg/L was diluted with tap water at a rate of about 1/8 and treated in an upflow anaerobic sludge blanket reactor under mesophilic conditions (37±0.5 °C) with an active volume of 6.15 L. During the experimental study, the system was prepared for an experimental study with 39 days batch feeding process in order to provide the necessary microorganism adaptation by preventing the negative effects that may arise from the physical and chemical structure of the olive mill wastewater. The anaerobic process was fed semicontinuous for 32 days, where the hydraulic retention time was 10 days and the organic loading rate was 1 kg COD/m3 /day. The low alkalinity of olive mill wastewater was challenging for the anaerobic process. Approximately 615 mL (10000 mg/L COD) diluted olive mill wastewater by adding 1N 12 mL NaOH was brought to the appropriate pH range for anaerobic conditions (6.8-7.2). At the end of the study, it was determined that 2177 (± 279) mL/day biogas production was realized with 75.6% (± 14.2) COD removal. Anaerobic treatment is a process that must be considered in terms of sustainability and environment for COD removal and biogas production from olive mill wastewater which has been diluted and supplemented alkalinity.Keywords: Olive Mill Wastewater, Anaerobic Treatment, COD Removal, Biogas Production

___

  • [1] Mert B.K., Yonar T., Kilic M.Y., Kestioglu K. 2010. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes. Journal of Hazardous Materials, 174 (1-3): 122-128.
  • [2] Tufaner F. 2019. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process. Separation Science and Technology, 1-12.
  • [3] TÜİK 2019. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri, Zeytin Üretimi 1988-2018. http://www.tuik.gov.tr/PreTabloArama.do?metod=search&araType=vt. (Erişim Tarihi: 24.12.2019).
  • [4] IOC 2018. International Olive Council, Market Newsletter No 126 – April 2018. 51st meeting of the Advisory Committee, http://www.internationaloliveoil.org/documents/viewfile/13437- market-newsletter-april-2018. (Erişim Tarihi: 08.03.2019).
  • [5] UZZK 2019. Ulusal Zeytin ve Zeytinyağı Konseyi, 2019-2020 Üretim Sezonu Sofralık Zeytin ve Zeytinyağı Rekoltesi Ulusal Resmi Tespit Heyeti Raporu. http://www.uzzk.org/Belgeler/UZZK_2019_2020_Turkiye_Rekolte_Raporu.pdf. (Erişim Tarihi: 28.04.2020).
  • [6] IOC 2019. International Olive Council, World olive oil figures, Production. https://www.internationaloliveoil.org/wp-content/uploads/2020/04/HO-W901-29-11-2019- P.pdf. (Erişim Tarihi: 28.04.2020).
  • [7] Kiritsakis A., Shahidi F. 2017. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing. John Wiley & Sons, 1-688.
  • [8] García C.A., Hodaifa G. 2017. Real olive oil mill wastewater treatment by photo-Fenton system using artificial ultraviolet light lamps. Journal of Cleaner Production, 162: 743-753.
  • [9] Bernardi B., Benalia S., Zema D., Tamburino V., Zimbalatti G. 2017. An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater. Information Processing in Agriculture, 4 (4): 316-320.
  • [10] Rocha C., Soria M., Madeira L.M. 2018. Thermodynamic analysis of olive oil mill wastewater steam reforming. Journal of the Energy Institute, 92 (5): 1599-1609.
  • [11] De Leonardis A., Macciola V., Iorizzo M., Lombardi S.J., Lopez F., Marconi E. 2018. Effective assay for olive vinegar production from olive oil mill wastewaters. Food Chemistry, 240: 437- 440.
  • [12] Hanafi F., Assobhei O., Mountadar M. 2010. Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. Journal of Hazardous Materials, 174 (1-3): 807-812.
  • [13] Justino C.I., Duarte K., Loureiro F., Pereira R., Antunes S.C., Marques S.M., Gonçalves F., Rocha-Santos T.A., Freitas A.C. 2009. Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation. Journal of Hazardous Materials, 172 (2-3): 1560-1572.
  • [14] Niaounakis M., Halvadakis C.P. 2006. Olive Processing Waste Management: Literature Review and Patent Survey. Second Edition, Elsevier Science, 498p, Amsterdam (Netherlands).
  • [15] Turano E., Curcio S., De Paola M.G., Calabrò V., Iorio G. 2002. An integrated centrifugation– ultrafiltration system in the treatment of olive mill wastewater. Journal of Membrane Science, 209 (2): 519-531.
  • [16] Lucas M.S., Peres J.A. 2009. Removal of COD from olive mill wastewater by Fenton's reagent: Kinetic study. Journal of Hazardous Materials, 168 (2-3): 1253-1259.
  • [17] Calabrò P.S., Fòlino A., Tamburino V., Zappia G., Zema D.A. 2018. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation. Biosystems Engineering, 172: 19-28.
  • [18] El-Abbassi A., Kiai H., Raiti J., Hafidi A. 2014. Application of ultrafiltration for olive processing wastewaters treatment. Journal of Cleaner Production, 65: 432-438.
  • [19] Ochando-Pulido J.M., Martinez-Ferez A. 2018. Operation setup of a nanofiltration membrane unit for purification of two-phase olives and olive oil washing wastewaters. Science of the Total environment, 612: 758-766.
  • [20] Ochando-Pulido J., Stoller M., Di Palma L., Martinez-Ferez A. 2014. Threshold performance of a spiral-wound reverse osmosis membrane in the treatment of olive mill effluents from two-phase and three-phase extraction processes. Chemical Engineering and Processing: Process Intensification, 83: 64-70.
  • [21] Masi F., Bresciani R., Munz G., Lubello C. 2015. Evaporation–condensation of olive mill wastewater: Evaluation of condensate treatability through SBR and constructed Wetlands. Ecological Engineering, 80: 156-161.
  • [22] Sklavos S., Gatidou G., Stasinakis A.S., Haralambopoulos D. 2015. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds. Journal of Environmental Management, 162: 46-52.
  • [23] Papaphilippou P.C., Yiannapas C., Politi M., Daskalaki V.M., Michael C., Kalogerakis N., Mantzavinos D., Fatta-Kassinos D. 2013. Sequential coagulation–flocculation, solvent extraction and photo-Fenton oxidation for the valorization and treatment of olive mill effluent. Chemical Engineering Journal, 224: 82-88.
  • [24] Hodaifa G., Gallardo P.A.R., García C.A., Kowalska M., Seyedsalehi M. 2019. Chemical oxidation methods for treatment of real industrial olive oil mill wastewater. Journal of the Taiwan Institute of Chemical Engineers, 7: 247-254.
  • [25] Chedeville O., Debacq M., Porte C. 2009. Removal of phenolic compounds present in olive mill wastewaters by ozonation. Desalination, 249 (2): 865-869.
  • [26] González-González A., Cuadros F. 2015. Effect of aerobic pretreatment on anaerobic digestion of olive mill wastewater (OMWW): An ecoefficient treatment. Food and bioproducts processing, 95: 339-345.
  • [27] Galliou F., Markakis N., Fountoulakis M., Nikolaidis N., Manios T. 2018. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting. Waste Management, 75: 305-311.
  • [28] Ubay G., Ozturk I. 1997. Anaerobic treatment of olive mill effluents. Water Science and Technology, 36 (2-3): 287-294.
  • [29] Ochando-Pulido J., Pimentel-Moral S., Verardo V., Martinez-Ferez A. 2017. A focus on advanced physico-chemical processes for olive mill wastewater treatment. Separation and Purification Technology, 179: 161-174.
  • [30] Sampaio M., Gonçalves M., Marques I. 2011. Anaerobic digestion challenge of raw olive mill wastewater. Bioresource Technology, 102 (23): 10810-10818.
  • [31] Azbar N., Tutuk F., Keskin T. 2009. Biodegradation performance of an anaerobic hybrid reactor treating olive mill effluent under various organic loading rates. International Biodeterioration & Biodegradation, 63 (6): 690-698.
  • [32] El-Gohary F., Tawfik A., Badawy M., El-Khateeb M.A. 2009. Potentials of anaerobic treatment for catalytically oxidized olive mill wastewater (OMW). Bioresource Technology, 100 (7): 2147- 2154.
  • [33] McNamara C.J., Anastasiou C.C., O'Flaherty V., Mitchell R. 2008. Bioremediation of olive mill wastewater. International Biodeterioration & Biodegradation, 61 (2): 127-134.
  • [34] Paraskeva P., Diamadopoulos E. 2006. Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology and Biotechnology, 81 (9): 1475-1485.
  • [35] Mechich T., Sayadi S. 2005. Evaluating process imbalance of anaerobic digestion of olive mill wastewaters. Process Biochemistry, 40 (1): 139-145.
  • [36] Dareioti M.A., Dokianakis S.N., Stamatelatou K., Zafiri C., Kornaros M. 2010. Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Management, 30 (10): 1841-1848.
  • [37] Gelegenis J., Georgakakis D., Angelidaki I., Christopoulou N., Goumenaki M. 2007. Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure. Applied Energy, 84 (6): 646-663.
  • [38] Martinez-Garcia G., Johnson A.C., Bachmann R.T., Williams C.J., Burgoyne A., Edyvean R.G.J. 2009. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis. Journal of Hazardous Materials, 164 (2-3): 1398-1405.
  • [39] Orive M., Cebrián M., Zufía J. 2016. Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry. Renewable Energy, 97: 532-540.
  • [40] Al-Mallahi J., Furuichi T., Ishii K. 2016. Appropriate conditions for applying NaOH-pretreated two-phase olive milling waste for codigestion with food waste to enhance biogas production. Waste Management, 48: 430-439.
  • [41] Gharsallah N., Labat M., Aloui F., Sayadi S. 1999. The effect of Phanerochaete chrysosporium pretreatment of olive mill waste waters on anaerobic digestion. Resources Conservation and Recycling, 27 (1-2): 187-192.
  • [42] Dareioti M.A., Dokianakis S.N., Stamatelatou K., Zafiri C., Kornaros M. 2009. Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a twostage process. Desalination, 248 (1-3): 891-906.
  • [43] Gunay A., Karadag D. 2015. Recent developments in the anaerobic digestion of olive mill effluents. Process Biochemistry, 50 (11): 1893-1903.
  • [44] Tufaner F. 2020. Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland. Environmental Technology, 41 (7): 912-920.
  • [45] Azbar N., Tutuk F., Keskin T. 2009. Effect of organic loading rate on the performance of an upflow anaerobic sludge blanket reactor treating olive mill effluent. Biotechnology and Bioprocess Engineering, 14 (1): 99-104.
  • [46] Tufaner F. 2015. Büyükbaş hayvansal atıkların biyometanizasyon süreçlerinin iyileştirilmesinin araştırılması. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [47] Tufaner F., Avşar Y., Gönüllü M.T. 2017. Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network. Clean Technologies and Environmental Policy, 19 (9): 2255-2264.
  • [48] APHA 2012. Standard Methods for Examination of Water and Wastewater. 22nd ed. edited by Rice W.Eugene, Baird B. Rodger, Eaton D.Andrew., American Public Health Association (APHA), American Water Works Association,Water Environmental Federation. Washington, DC, USA.
  • [49] Rajesh Banu J., Arulazhagan P., Adish Kumar S., Kaliappan S., Lakshmi A.M. 2015. Anaerobic co-digestion of chemical-and ozone-pretreated sludge in hybrid upflow anaerobic sludge blanket reactor. Desalination and Water Treatment, 54 (12): 3269-3278.
  • [50] Forster-Carneiro T., Perez M., Romero L.I. 2008. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 99 (15): 6994-7002.
  • [51] Lee E., Bittencourt P., Casimir L., Jimenez E., Wang M., Zhang Q., Ergas S.J. 2019. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge. Waste Management, 95: 432-439.
  • [52] Pandey P.K., Ndegwa P.M., Soupir M.L., Alldredge J.R., Pitts M.J. 2011. Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions. Biomass & Bioenergy, 35 (7): 2705-2720.
  • [53] Guendouz J., Buffiere P., Cacho J., Carrere M., Delgenes J.P. 2010. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor. Waste Management, 30 (10): 1768-1771.
  • [54] Yangui A., Abderrabba M. 2018. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chemistry, 262: 102-109.
  • [55] Yetilmezsoy K., Sakar S. 2008. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation. Journal of Hazardous Materials, 151 (2-3): 547-558.
  • [56] Öztürk İ. 2007. Anaerobik Arıtma ve Uygulamaları. Genişletilmiş 2 Baskı, Su Vakfı Yayınları, İstanbul.
  • [57] Tchobanoglus G., Burton F., Stensel H.D. 2003. Wastewater engineering: Treatment and reuse. Fourth Edition, Metcalf & Eddy Inc. McGraw-Hill, New York, USA.
  • [58] Tufaner F., Avsar Y. 2019. Economic analysis of biogas production from small scale anaerobic digestion systems for cattle manure. Environmental Research and Technology, 2 (1): 6-12.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü
Sayıdaki Diğer Makaleler

An Evaluation on the Sexual Mutilation in Females of Gylippus Simon, 1879 species (Gylippinae, Gylippidae, Solifugae)

Melek ERDEK

Optimal PI Kontrolör Tasarımı için Üçgenler Ağında Lineer Enterpolasyon Yöntemiyle Kararlılık Sınır Yüzeyinin Oluşturulması

Gürkan KAVURAN

C4.5 Sınıflandırma Algoritması ile Teknoloji Bağımlılığı Üzerine Bir Uygulama

Akıner KAÇMAZ, Kazım YILDIZ, Ali BULDU

Kütahya Dumlupınar Üniversitesi Evliya Çelebi Yerleşkesine Gelen Toplu Taşıma Araçlarının Hizmet Düzeyinin TCRP 100 ve TCRP 165 Raporlarına Göre Değerlendirilmesi

Yaşar VİTOŞOĞLU, Şafak BİLGİÇ, Polat YALINIZ

Yüksek Hızlı Demiryolları, Üretim ve Ekonomik Kalkınmaya Etkisinin İncelenmesi

Mehmet Çağrı KIZILTAŞ

Farklı Kaynak Parametrelerinde Sürtünme Kaynağı ile Birleştirilmiş AISI304/AISI5140 Çelik Çiftlerinin Mekanik ve Mikroyapılarının Araştırılması

Edip ÇETKİN

Van Gölü Martısı (Larus armenicus Buturlin, 1934)’nın Dışkı Muayenesinde Görülen Helmintler

Erkan AZİZOĞLU, Özdemir ADIZEL, Ali Bilgin YILMAZ, Ferhat ALGÜR

eton Ağırlıklı Barajların Simbiyotik Arama Algoritması ile Optimizasyonu

Erdem ÇOBAN, Fatih Ahmet ŞENEL, Kemal SAPLIOĞLU, Soner UZUNDURUKAN

Doğal Kabak Çekirdeği Kabuğunun Bor Adsorpsiyon Kapasitesi

Hakan ÇELEBİ

Toz Metalurjisi ile Üretilen Şekil Hafızalı NiTi Alaşımlarında Nb Parçacık İlavesinin Mikroyapı ve Sertlik Üzerine Etkisi

Hakan GÖKMEŞE, Hakan Burak KARADAĞ, Naci Arda TANIŞ