Uzaktan Algılama Sistemleri için Elma ve Armut Yapraklarının Dielektrik Parametrelerinin Ölçülmesi ve Modellenmesi

Gelişen teknolojilerin bitkilerde gerek uzaktan izleme/kontrol gerekse uzaktan algılama (UA) sistemlerinde yaygınbir şekilde kullanılması, bitki kümesinin verim ve kalitenin artmasında önemli rol oynamaktadır. Bitkilerdedielektrik özelliklerin belirlenmesi, bu alanda geliştirilecek sistemler için önem arz etmektedir. Bundan dolayı,bazı bitki türlerinin sıklıkla bulunduğu bölgelerde, elektromanyetik (EM) dalgaların bitki yüzeylerine nüfuz etmeaçısından dielektrik parametrelerinin çalışılmasını gerektirmektedir. Bu çalışmada Isparta bölgesinde çok yoğunolarak üretilmekte olan elma (Malus communis) ve armut (Pyrus communis) ağaçlarının yapraklarına ait dielektrikparametreler Dalga Kılavuzu İletim Hattı yöntemiyle ölçülmüştür. Ölçümler 3,3-4,9 GHz arasında (WR229 dalgakılavuzu) yapılmış ve nem oranı ve frekansa bağlı elma ve armut yapraklarının dielektrik karakteristikleriincelenmiştir. Elma yapraklarının dielektrik ölçüm verileri kullanarak frekans ve nem oranına (NO) bağlı, eğriuydurma yöntemiyle yeni bir model önerilmiştir. Bu model, elma türüyle aynı aileden olan armut yaprağınındielektrik ölçüm sonuçlarıyla karşılaştırılarak önerilen modelin doğruluğu test edilmiştir. Modelin performansınıgöstermek için determinasyon katsayısı R2 ve hataların ortalama karekökü (RMSE) değerleri sırasıyla 0,995 ve0,625 olarak elde edilmiştir.

Measurement and Modeling of Dielectric Parameters of Apple and Pear Leaves for Remote Sensing Systems

The widespread use of developing technologies in both remote monitoring/control and remote sensing (RS) systems in vegetative materials plays an important role in increasing the efficiency and quality of the plants. Determination of dielectric properties in plants is important for the systems to be progressed in this field. Therefore, it is necessary to study dielectric parameters in order to penetrate plant surfaces of electromagnetic (EM) waves in areas where some plant species are frequently found. In this study, dielectric characteristics of the leaves of apple and pear trees which are produced in Isparta region are measured with Waveguide Transmission Line method. Measurements are made between 3.3-4.9 GHz (WR229 waveguide) and dielectric characteristics of apple and pear leaves depending on moisture content (MC) and frequency are investigated. A new model is proposed via a curve fitting method based on the frequency and moisture content using dielectric measurement data of apple leaves. The accuracy of the proposed model is tested by comparing the model results with the dielectric measurement results of the pear which belong to the same family with the apple species. To make sure the performance of the model well enough, the coefficient of determination R 2 and root mean square error (RMSE) values are obtained as 0.995 and 0.625, respectively.

___

  • [1] Faktorová D., Isteníková K. 2011. Modelling of Scattering Parameters in Biological Tissues. Skin, 1 (41): 1-7.
  • [2] Nelson S.O. 2006. Agricultural Applications of Dielectric Measurements. IEEE Transactions on Dielectrics and Electrical Insulation, 13 (4): 688-702.
  • [3] Nelson S. 1999. Dielectric Properties Measurement Techniques and Applications. Transactions of the ASAE-American Society of Agricultural Engineers, 42 (2): 523-530.
  • [4] Chuah H., Kam S., Chye Y. 1997. Microwave Dielectric Properties of Rubber and Oil Palm Leaf Samples: Measurement and Modelling. International Journal of Remote Sensing, 18 (12): 2623- 2639.
  • [5] Kocakusak A., Colak B., Helhel S. 2016. Frequency Dependent Complex Dielectric Permittivity of Rubber and Magnolia Leaves and Leaf Water Content Relation. Journal of Microwave Power and Electromagnetic Energy, 50 (4): 294-307.
  • [6] Romanov A.N., Ulanov P.N. 2018. Seasonal Differences in Dielectric Properties of Dwarf Woody Tundra Vegetation in a Microwave Range. IEEE Transactions on Geoscience and Remote Sensing, 57 (6): 3119-3125.
  • [7] Ulaby F.T., El-Rayes M.A. 1987. Microwave Dielectric Spectrum of Vegetation-Part II: DualDispersion Model. IEEE Transactions on Geoscience and Remote Sensing, 5: 550-557.
  • [8] Afzal A., Mousavi S.F. 2008. Estimation of Moisture in Maize Leaf by Measuring Leaf Dielectric Constant. International Journal of Agriculture & Biology, 10: 66-68.
  • [9] Colak B. 2019. Moisture Content Effect of Banana Leaves to Radio Frequency Absorbing Microwave and Optical Technology Letters.
  • [10] Kaur R., Aul G.D., Chawla V. 2015. Improved Reflection Loss Performance of Dried Banana Leaves Pyramidal Microwave Absorbers by Coal for Application in Anechoic Chambers. Progress In Electromagnetics Research, 43: 157-164.
  • [11] Jayamani E., Hamdan S., Ezhumalai P., Bakri M.K. 2016. Investigation on Dielectric and Sound Absorption Properties of Banana Fibers Reinforced Epoxy Composites. Jurnal Teknologi, 78: 6- 10.
  • [12] Khaled D., Novas N., Gazquez J.A., Garcia R.M., Agugliaro F.M. 2015. Fruit and Vegetable Quality Assessment via Dielectric Sensing. Sensors, 15 (7): 15363-15397.
  • [13] Navarrete A., Mato R.B., Dimitrakis G., Lester E., Robinson J.R.,Cocero M.J., Kingman S. 2011. Measurement and Estimation of Aromatic Plant Dielectric Properties, Application to Low Moisture Rosemary. Industrial Crops and Products, 33 (3): 697-703.
  • [14] Kamaruddin M.J., Yusof M.S.B.M., Ngadi N., Zakaria Z.Y., Arsad A., Kidam K. 2017. Dielectric Properties for Extraction of Orthosiphon Stamineus (Java Tea) Leaves. Chemical Engineering Transactions, 56: 1771-1776.
  • [15] Kraszewski A.W., Nelson S.O. 2004. Microwave Permittivity Determination in Agricultural Products. Journal of Microwave Power and Electromagnetic Energy, 39 (1): 41-52.
  • [16] Venkatesh M., Raghavan G. 2005. An Overview of Dielectric Properties Measuring Techniques. Canadian Biosystems Engineering, 47 (7): 15-30.
  • [17] Nelson S.O. 2010. Fundamentals of Dielectric Properties Measurements and Agricultural Applications. Journal of Microwave Power and Electromagnetic Energy, 44 (2): 98-113.
  • [18] Van Emmerik T., Steele-Dunne S., Judge J., van de Giesen N. 2015. A comparison Between Leaf Dielectric Properties of Stressed and Unstressed Tomato Plants. IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
  • [19] Itolikar A.B., Kurtadikar M.L. 2017. Microwave Measurements of Dielectric Properties of Corn Vegetation at C-Band and Comparison with Debye-Cole Dual Dispersion Model. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16 (4): 954-965.
  • [20] Krraoui H., Mejri F., Aguili T. 2016. Dielectric Constant Measurement of Materials by a Microwave Technique: Application to the Characterization of Vegetation Leaves. Journal of Electromagnetic Waves and Applications, 30 (12): 1643-1660.
  • [21] Van Emmerik T.H. 2013. Diurnal Differences in Vegetation Dielectric Constant as a Measure of Water Stress. Yüksek Lisans Tezi, Delft University of Technology, Civil Engineering, Delft, Hollanda.
  • [22] Durmuş M., Salman A.O., Yıldırım T.Ş. 2018. NRW Metodu İle Malzemelerin Elektromanyetik Parametrelerinin Bulunması. Kocaeli Üniversitesi Fen Bilimleri Dergisi, 1 (1): 13-19.
  • [23] Yaw K.C. 2012. Measurement of Dielectric Material Properties: Application Note, Rhode & Schwarz.
  • [24] Anonim. 2004. De-Embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer, Uygulama Notu.
  • [25] Helhel S., Kurnaz O. 2016. Buried Metal Detection within the Wooden Block by X‐Band Measurements. Microwave and Optical Technology Letters, 58 (5): 1245-1253.
  • [26] Ye L., Li C., Sun X., Jin S., Chen B., Ye X., Fan J. 2016. Thru-Reflect-Line Calibration Technique: Error Analysis for Characteristic Impedance Variations in the Line Standards. IEEE Transactions on Electromagnetic Compatibility, 59 (3): 779-788.
  • [27] Chung B.K. 2007. Dielectric Constant Measurement for Thin Material at Microwave Frequencies. Progress In Electromagnetics Research, 75: 239-252.
  • [28] Li Z., Zeng J., Chen Q., Bi H. 2014. The measurement and model construction of complex permittivity of vegetation. Science China Earth Sciences, 57 (4): 729-740.
  • [29] Shrestha B.L., Wood H.C., Sokhansanj S. 2011. Microwave dielectric properties of alfalfa leaves from 0.3 to 18 GHz. IEEE Transactions on Instrumentation and Measurement, 60: 2926-2933.