Tepki Yüzey Metodolojisi Kullanarak Alüminyum Matrisli Kompozitlerin Aşınma Parametrelerinin Optimizasyonu

Bu çalışmada, mekanik alaşımlama yöntemiyle üretilen alüminyum matrisli kompozitlerin aşınma performansı incelenmiştir. Tepki Yüzey Metodolojisi (TYM) Merkezi Birleşik Tasarım (MBT) kullanılarak belirli sürtünme katsayına bağlı olarak aşınma parametreleri optimize edilmeye çalışılmıştır. Farklı takviye miktarlarıyla (%6 ve %12) üretilen kompozit malzemelerin aşınma testleri farklı yük (5 N, 10 N ve 20 N) ve farklı kayma hızlarında $(0,2 ms^{-1}, 0,4 ms^{-1} ve 0,6 ms-1)$ yapılmıştır. Aşınma test sonuçlarında, optimum aşınma parametrelerini belirlemek için ağırlık kaybı (düşük en iyi) ve sürtünme katsayısı 0,54 (en iyi) yaklaşımı kullanılmıştır. Elde edilen sonuçlarda, ağırlık kaybı için en etkili parametrenin takviye miktarı ve kayma hızına kıyasla yük olduğu görülmüştür. Sürtünme katsayısı için ise yük ve kayma hızına kıyasla takviye miktarı en etkili parametre olduğu belirlenmiştir. Elde edilen optimum parametreler ise 9,24 N yük, $0,6 ms^{-1}$ kayma hızı ve %12 takviye miktarı olduğu belirlenmiştir. Çalışma sonucunda elde edilen parametreler kullanılarak yapılan aşınma testlerinde, ağırlık kaybı 8,536 mg, sürtünme katsayısı 0,522 olarak elde edilmiştir.

Optimization of Wear Parameters of Aluminum Matrix Composites Using Response Surface Methodology

In this study, was investigated the wear performance of aluminium matrix composites produced by mechanical alloying method. Using the Response Surface Methodology (RSM) Central Composite Design (CCD), it was attempted to optimize the wear parameters depending on the specific friction coefficient. Wear testers of composite materials produced with different reinforcement amounts (6% and 12%) were made at different loads (5 N, 10 N and 20 N) and different sliding speeds$(0,2 ms^{-1}, 0,4 ms^{-1} and 0,6 ms-1)$ . In the wear test results, were used weight loss (low best) and friction coefficient 0.54 (best) approach to determine optimum wear parameters. The results show that the most effective parameter for weight loss is the reinforcement amount and the load compared to the sliding speed. For the friction coefficient, it was determined that the most effective parameter the reinforcement amount compared to the load and sliding speed. The optimum parameters obtained were determined to be 9.24 N load, $0.6 ms^{-1}$ sliding speed and 12% reinforcement amount. In the wear tests performed using the parameters obtained as a result of the study, the weight loss was found to be 8.536 mg and the friction coefficient as 0.522.

___

  • [1] Simsek D., Simsek İ., Ozyurek D. 2019. Production and characterization of Al-SiC composites by mechanical milling. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8 (1): 227-233.
  • [2] Rajabi M. 2003. Characterisation of Al-SiC composite materials produced by double pressing- double sintering method. International Journal of Engineering Science, 14 (2): 21-37.
  • [3] Rajaram G., Kumaran S., Rao T. S., Kamaraj M. 2010. Studies on high temperature wear and its mechanism of Al–Si/graphite composite under dry sliding conditions. Tribology International, 43 (11): 2152-2158.
  • [4] Etemoğlu A. B., Etemoğlu N., Türkan B., Canbolat, A. S. 2018. Araç fren sistemlerinin ısıl performansının parametrik olarak incelenmesi. El-Cezeri Journal of Science and Engineering, 5 (2): 556-565.
  • [5] Asfaram A., Ghaedi M., Agarwal S., Tyagi I., Gupta V. K. 2015. Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Advances, 5 (24): 18438-18450.
  • [6] Yuan X., Liu J., Zeng G., Shi J., Tong,J., Huang G. 2008. Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy, 33 (7): 1678-1684.
  • [7] Danappa G. T., Raghavendra C. R., Swamy R. P., Naik K. 2021. Dry sliding wear behaviour of Al7075/Gr/nano TiO2 MMC using RSM. Materials Today: Proceedings. 38 (5): 2797-2802.
  • [8] Dewangan S., Jha S. K., Mandal A. 2020. Optimization of dry sliding wear parameters of thixoformed A356-5TiB2 in-situ composites using RSM. Materials Today: Proceedings. 33 (8): 5061-5065.
  • [9] Saravanan I., Perumal A. E., Vettivel S. C., Selvakumar N., Baradeswaran A. 2015. Optimizing wear behavior of TiN coated SS 316L against Ti alloy using Response Surface Methodology. Materials & Design, 67: 469-482.
  • [10] Road vehicles-Brake linings and pads for friction type brakes https://intweb.tse.org.tr/standard/standard/Standard.aspx? [Erişim Tarihi: 16 Nisan 2021].
  • [11] Friction Coefficient Identification and Environmental Marking System for Brake Linings J866_201207, https://www.sae.org/standards/content/j866_201207/ [Erişim Tarihi:16 Nisan 2021]
  • [12] Bharath V., Nagaral M., Auradi V., Kori S. A. 2014. Preparation of 6061Al-Al2O3 MMC’s by stir casting and evaluation of mechanical and wear properties. Procedia Materials Science, 6: 1658-1667.
  • [13] Simsek D., Özyürek D. 2020. The wear performance at elevated temperatures of aluminum matrix composite materials produced by mechanochemical method. Journal of Tribology, 142 (10): 101701.
  • [14] Ay H., Özyürek D., Yıldırım M., Bostan B. 2016. The effects of B4C amount on hardness and wear behaviours of 7075-B4C composites produced by powder metallurgy method. Acta Physica Polonica A, 129: 565-568.
  • [15] Baghchesara M. A., Abdizadeh H., Baharvandi H. R. 2010. Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with ZrO2 particles. Asian Journal of Chemistry, 22 (5): 3824-3834.
  • [16] Özyürek D, Tekeli S, Güral A, Meyveci A, Gürü M. 2010. Effect of Al2O3 amount on microstructure and wear properties of Al–Al2O3 metal matrix composites prepared using mechanical alloying method. Powder Metallurgy and Metal Ceramics, 49 (5-6): 50-57.
  • [17] Özyürek D., Tunçay T., Kaya H. 2014. The effects of T5 and T6 heat treatments on wear behaviour of AA6063 alloy. High Temperature Materials and Processes, 33(3): 231-237.
  • [18] Özyürek D., Ciftci I., Tuncay T. 2013. The effect of aging and sliding speed on wear behaviour of Cu-Cr-Zr alloy. Wear Testing, 55 (6): 468-471.
  • [19] Simsek D., Simsek I., Ozyurek D. 2020. Relationship between Al2O3 content and wear behavior of Al+ 2% graphite matrix composites. Science and Engineering of Composite Materials, 27 (1): 177-185.
  • [20] Vettivel S. C., Selvakumar N., Narayanasamy R., Leema N. 2013. Numerical modelling, prediction of Cu–W nano powder composite in dry sliding wear condition using response surface methodology. Materials & Design, 50: 977-996.
  • [21] Punugupati, G., Kandi, K. K., Bose, P. S. C., Rao, C. S. P. 2018., Modeling and optimization of wear characteristics of gelcast fused silica ceramic composites using RSM. Materials Today: Proceedings, 5 (2): 6946-6953.
  • [22] Pugazhenthi, R., Sreeram, D., Scaria, C. T., Anbuchezhiyan, G., Nanthakumar, P., 2020. Effect of process parameters on machining of Al-TiC metal matrix composites using RSM. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2020.11.357.
  • [23] Lakshmi, K. J., Sogalad, I., Basavarajappa, S., & Raghavendra, C. R. 2021., Optimization of erosive wear parameters on NiCrAlY based nano composite coating by RSM. Materials Today: Proceedings, 46: 763-766.