Sıvı Pd25Ni75 Nanoparçacıklarının Katılaşma Süreci Üzerine Soğutma Oranının Etkisinin Moleküler Dinamik Benzetişim Yöntemiyle İncelenmesi

Sıvı Pd25Ni75 nanoparçacığının katılaşma sıcaklığı ve atomik yapısının soğutma oranına bağlı değişimi molekülerdinamik benzetişimi kullanılarak incelendi. Soğutma oranının, sistemin atomik yapısı ve katılaşma noktasıüzerindeki etkilerini araştırabilmek için 0.05 K/ps ile 50.0 K/ps aralığında değişen soğutma oranları ile çalışıldı.Katılaşma sıcaklığı toplam enerjide gözlenen ani değişime karşılık gelen sıcaklıktan ve sistemin atomik yapısı iseçiftler dağılım fonksiyonu, Honeycutt-Andersen çiftler analizi ve atomik konfigürasyondan belirlendi. Pd25Ni75nanoparçacığı için elde edilen sonuçlar katılaşmanın soğutma oranına bağlı yapısal dönüşüm diyagramı üzerindeözetlendi. Bulgularımız, sistemin atomik yapısının ve katılaşma sıcaklığının soğutma oranı ile direkt ilişkiliolduğunu göstermektedir.

Investigation of the effect of cooling rate on the solidification process of liquid Pd25Ni75 nanoparticles by molecular dynamics simulation

The change in solidification temperature and atomic structure of the liquid Pd25Ni75 nanoparticle depending on the cooling rate was investigated using molecular dynamics simulations. To investigate the effects of cooling rate on the atomic structure and solidification point of the system, cooling rates ranging from 0.05 K/ps to 50.0 K/ps were studied. The solidification temperature was estimated from the temperature corresponding to the sudden change in total energy, and the atomic structure was determined from the pair distribution functions, Honeycutt-Andersen pair analysis and atomic configurations. The results obtained for the Pd25Ni75 nanoparticle were summarized by using a structural transformation diagram based on the cooling rate of solidification. Our findings show that the atomic structure and solidification temperature of the system are directly related to the cooling rate.

___

  • [1] Narayanan R., El-Sayed M.A. 2005. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. J. Phys. Chem. B, 109: 12663–12676.
  • [2] Hills C.W., Mack N.H., Nuzzo R.G. 2003. The Size-Dependent Structural Phase Behaviors of Supported Bimetallic (Pt−Ru) Nanoparticles. J. Phys. Chem. B, 107: 2626–2636.
  • [3] Bönnemann H., Richards R.M. 2001. Nanoscopic Metal Particles − Synthetic Methods and Potential Applications. Eur. J. Inorg. Chem, 2001: 2455–2480.
  • [4] Ferrando R., Jellinek J., Johnston R.L. 2008. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev., 108: 845–910.
  • [5] Pawlow P. 1909. Uber die Abhangigkeit des Schmelzpunktes von der Oberflachenenergie eines Festen Korpers. Z. Phys. Chem., 65: 1–35.
  • [6] Buffat P., Borel J.-P. 1976. Size effect on the melting temperature of gold particles. Phys. Rev. A., 13: 2287–2298.
  • [7] Reiss H., Mirabel P., Whetten R.L. 1988. Capillarity theory for the “coexistence” of liquid and solid clusters. J. Phys. Chem., 92: 7241–7246.
  • [8] Domekeli U., Sengul S., Celtek M., Canan C. 2018. The melting mechanism in binary Pd 0.25 Ni 0.75 nanoparticles: molecular dynamics simulations. Philos. Mag., 98: 371–387.
  • [9] Hanszen K.-J. 1960. Theoretische Untersuchungen Uber den Schmelzpunkt Kleiner Kugelchen - Ein Beitrag Zur Thermodnamik Der Grenzflachen. Zeitschrift Fur Phys., 157: 523–553.
  • [10] Sambles J.R. 1971. An Electron Microscope Study of Evaporating Gold Particles: The Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles. Proc. R. Soc. LONDON Ser. A-MATHEMATICAL Phys. Sci., 324: 339–351.
  • [11] Baletto F., Ferrando R. 2005. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys., 77: 371–423.
  • [12] Hahn M.Y., Whetten R.L. 1988. Rigid-Fluid Transition in Specific-Size Argon Clusters. Phys. Rev. Lett., 61: 1190–1193.
  • [13] Schmidt M., Hippler T., Donges J., Kronmüller W., von Issendorff B., Haberland H., Labastie P. 2001. Caloric Curve across the Liquid-to-Gas Change for Sodium Clusters. Phys. Rev. Lett., 87: 203402.
  • [14] Schmidt M., Haberland H. 2002. Phase transitions in clusters. Comptes Rendus Phys., 3: 327– 340.
  • [15] Cleveland C.L., Luedtke W.D., Landman U. 1999. Melting of gold clusters. Phys. Rev. B., 60: 5065–5077.
  • [16] Baletto F., Mottet C., Ferrando R. 2002. Freezing of silver nanodroplets. Chem. Phys. Lett., 354: 82–87.
  • [17] Qi Y., Çağin T., Johnson W.L., Goddard W.A. 2001. Melting and crystallization in Ni nanoclusters: The mesoscale regime. J. Chem. Phys., 115: 385–394.
  • [18] Shibuta Y., Suzuki T. 2010. Melting and solidification point of fcc-metal nanoparticles with respect to particle size: A molecular dynamics study. Chem. Phys. Lett., 498: 323–327.
  • [19] Ding F., Rosen A., Curtarolo S., Bolton K. 2006. Modeling the melting of supported clusters, Appl. Phys. Lett., 88: 133110.
  • [20] Neyts E.C., Bogaerts A. 2009. Numerical Study of the Size-Dependent Melting Mechanisms of Nickel Nanoclusters. J. Phys. Chem. C., 113: 2771–2776.
  • [21] Shibuta Y., Suzuki T. 2010. Effect of wettability on phase transition in substrate-supported bccmetal nanoparticles: A molecular dynamics study. Chem. Phys. Lett., 486: 137–143.
  • [22] Bhethanabotla V.R., Steele W.A. 1990. Computer-simulation study of melting in dense oxygen layers on graphite. Phys. Rev. B., 41: 9480–9487.
  • [23] Lee S.H., Han S.S., Kang J.K., Ryu J.H., Lee H.M. 2008. Phase stability of Pt nanoclusters and the effect of a (0001) graphite surface through molecular dynamics simulation. Surf. Sci., 602: 1433–1439.
  • [24] Ryu J.H., Seo D.H., Kim D.H., Lee H.M. 2009. Molecular dynamics simulations of the diffusion and rotation of Pt nanoclusters supported on graphite. Phys. Chem. Chem. Phys., 11: 503–507.
  • [25] Sankaranarayanan S.K.R.S., Bhethanabotla V.R., Joseph B. 2005. Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Phys. Rev. B, 71: 195415.
  • [26] Liu H.B., Pal U., Perez R., Ascencio J.A. 2006. Structural Transformation of Au−Pd Bimetallic Nanoclusters on Thermal Heating and Cooling: A Dynamic Analysis. J. Phys. Chem. B, 110: 5191–5195.
  • [27] Mejia-Rosales S.J., Fernandez-Navarro C., Perez-Tijerina E., Montejano-Carrizales J.M., JoseYacamán M. 2006. Two-Stage Melting of Au−Pd Nanoparticles. J. Phys. Chem. B, 110: 12884– 12889.
  • [28] Shibuta Y., Suzuki T. 2011. A molecular dynamics study of cooling rate during solidification of metal nanoparticles. Chem. Phys. Lett., 502: 82–86.
  • [29] Wu D.T., Granasy L., Spaepen F. 2004. Nucleation and the Solid–Liquid Interfacial Free Energy. MRS Bull., 29: 945-950.
  • [30] Asta M., Beckermann C., Karma A., Kurz W., Napolitano R., Plapp M., Purdy G., Rappaz M., Trivedi R. 2009. Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater., 57: 941–971.
  • [31] Li T., Donadio D., Ghiringhelli L.M., Galli G. 2009. Surface-induced crystallization in supercooled tetrahedral liquids. Nat. Mater., 8: 726–730.
  • [32] Bai X.-M., Li M. 2006. Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach. J. Chem. Phys., 124: 124707.
  • [33] Shibuta Y., Watanabe Y., Suzuki T. 2009. Growth and melting of nanoparticles in liquid iron: A molecular dynamics study. Chem. Phys. Lett., 475: 264–268.
  • [34] Watanabe Y., Shibuta Y., Suzuki T. 2010. A Molecular Dynamics Study of Thermodynamic and Kinetic Properties of Solid–Liquid Interface for Bcc Iron. ISIJ Int., 50: 1158–1164.
  • [35] Son S.U., Jang Y., Park J., Bin Na H., Park H.M., Yun H.J., Lee J., Hyeon T. 2004. Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. J. Am. Chem. Soc., 126: 5026–5027.
  • [36] Wu Z., Zhang M., Zhao Z., Li W., Tao K. 2008. Synthesis of a Pd on Ni–B nanoparticle catalyst by the replacement reaction method for hydrodechlorination. J. Catal., 256: 323–330.
  • [37] Sutton A.P., Chen J. 1990. Long-range Finnis–Sinclair potentials. Philos. Mag. Lett., 61: 139– 146.
  • [38] Rafii-Tabar H., Sulton A.P. 1991. Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys. Philos. Mag. Lett., 63: 217–224.
  • [39] Özdemir Kart S., Tomak M., Uludoğan M., Çağın T. 2006. Structural, thermodynamical, and transport properties of undercooled binary Pd–Ni alloys. Mater. Sci. Eng. A, 435–436: 736–744.
  • [40] Çağin T., Kimura Y., Qi Y., Li H., Ikeda H., Johnsonb W.L., Goddard W.A. 1999. Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers. MRS Proc., 554: 43.
  • [41] Smith W., Forester T.R. 1996. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. J. Mol. Graph., 14: 136–141.
  • [42] Nose S. 1984. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81: 511–519.
  • [43] Hoover W.G. 1985. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31: 1695–1697.
  • [44] Honeycutt J.D., Andersen H.C. 1987. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91: 4950–4963.
  • [45] Celtek M., Sengul S., Domekeli U., Canan C. 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy. Eur. Phys. J. B, 89: 65.
  • [46] Celik F.A., Kazanc S. 2013. Crystallization analysis and determination of Avrami exponents of CuAlNi alloy by molecular dynamics simulation. Phys. B Condens. Matter., 409: 63–70.
  • [47] Celik F.A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Phys. Lett. A. 378: 2151–2156.
  • [48] Sengul S., Celtek M., Domekeli U. 2017. Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy. Vacuum., 136: 20–27.
  • [49] Celtek M., Sengul S., Domekeli U. 2017. Glass formation and structural properties of Zr50Cu50- xAlx bulk metallic glasses investigated by molecular dynamics simulations. Intermetallics, 84: 62–73.