Saf Kalsiyum Elementinin Isıtma Sürecinin Moleküler Dinamik Benzetim Yöntemi ile İncelenmesi

Çalışmada, gömülü atom metot (EAM) ve sıkı-bağ (TB) çok cisim potansiyelleri kullanılarak, ısıtma süreci boyunca saf kalsiyum (Ca) elementinin yapısal ve bazı fiziksel özellikleri klasik moleküler dinamik (MD) benzetim yöntemi ile incelendi. Bu süreç boyunca fiziksel parametrelerin sıcaklığa bağlı değişimlerini görebilmek için enerji-, örgü parametresi- ve yoğunluk-sıcaklık eğrilerinden yararlanıldı. Ayrıca sistemin atomik yapısının gelişimi ise, çiftler dağılım fonksiyonu, yapı faktörü ve Honeycutt-Andersen (HA) metodu gibi farklı analiz yöntemleri kullanılarak incelenmiştir. Her iki potansiyel için elde edilen sonuçlar, literatürde rapor edilen uygun deneysel ve diğer MD benzetim sonuçları ile karşılaştırıldı ve birlikte tartışıldı. Geniş sıcaklık aralığında EAM potansiyelinin, TB potansiyeline göre daha başarılı sonuçlar ürettiği gözlenmiştir. HA sonuçları, sistemin erime sürecinde özellikle 1541 ve 1551 tipi beşli kümelerin, sıvı bölgede ise 1431 tipi dörtlü kümelerin daha etkin roller üstlendiğini göstermiştir.

Investigation of Heating Process of Pure Calcium Element by Molecular Dynamics Simulation Method

In the study, the structural and some physical properties of pure calcium (Ca) during the heating process were investigated by classical molecular dynamic (MD) simulations method by using the embedded atom method (EAM) and tight-binding (TB) many body potentials. During this process, energy-, lattice-parameter and density- temperature curves were used to see the changes in physical parameters depending on temperature. In addition, the evolution of the atomic structure of the system was investigated using different analysis methods such as the pair distribution function, the structure factor and the Honeycutt-Andersen (HA) method. The results obtained for both potentials were compared with appropriate experimental and other MD simulation results reported in the literature and discussed together. It has been observed that the EAM potential in a wide temperature range produces more successful results than the TB potential. HA results showed that especially 1541 and 1551 type quintet clusters and 1431 type quartet clusters play more effective roles in the melting process of the system.

___

  • [1] Sheng H.W., Luo W.K., Alamgir F.M., Bai J.M., Ma E. 2006. Atomic packing and short-to- medium-range order in metallic glasses. Nature, 439 (7075): 419–425.
  • [2] Zhou X.W., Johnson R.A., Wadley H.N.G. 2004. Misfit-energy-increasing dislocations in vapor- deposited CoFe/NiFe multilayers. Physical Review B, American Physical Society; 69(14): 144113.
  • [3] Celik F.A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Physics Letters A, 378 (30–31): 2151–2156.
  • [4] Domekeli U., Sengul S., Celtek M., Canan C. 2018. The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations. Philosophical Magazine, 98 (5): 371–387.
  • [5] Sengul S., Celtek M., Domekeli U. 2017. Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy. Vacuum, 136: 20–27.
  • [6] Zhang Y., Mattern N., Eckert J. 2011. Atomic structure and transport properties of Cu50Zr45Al5 metallic liquids and glasses: Molecular dynamics simulations. Journal of Applied Physics, 110 (9): 093506.
  • [7] Sengul S., Celtek M. 2018. Pressure Effects on the Structural Evolution of Monatomic Metallic Liquid Hafnium. BEU Journal of Science, 7 (1): 144–158.
  • [8] Johnson M.L., Blodgett M.E., Lokshin K.A., Mauro N.A., Neuefeind J., Pueblo C., vd. 2016. Measurements of structural and chemical order in Zr80Pt20 and Zr77Rh23 liquids. Physical Review B, 93: 054203.
  • [9] Çeltek M., Güder V. 2020. Sıvı Vanadyumun Kristalizasyon Sürecine Soğutma Oranı Etkisinin Moleküler Dinamik Benzetim Metodu ile İncelenmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2): 730–745.
  • [10] Kizilagac S., Celik F., Koksal K. 2018. The Impact of Pt Concentration on Crystal Growth Mechanism in Pt-Pd Binary Alloy System in the Context of Molecular Dynamics. Metals, 8 (11): 926.
  • [11] Erkoç Ş. 1997. Empirical many-body potential energy functions used in computer simulations of condensed matter properties. Physics Reports, 278 (2): 79–105.
  • [12] Celtek M., Domekeli U., Sengul S., Canan C. 2021. Effects of Ag or Al addition to CuZr-based metallic alloys on glass formation and structural evolution: a molecular dynamics simulation study. Intermetallics, 128: 107023.
  • [13] Sengul S., Celtek M., Domekeli U. 2020. The structural evolution and abnormal bonding ways of the Zr80Pt20 metallic liquid during rapid solidification under high pressure. Computational Materials Science, 172: 109327.
  • [14] Oluwajobi A., Chen X. 2011. The effect of interatomic potentials on the molecular dynamics simulation of nanometric machining. International Journal of Automation and Computing, 8 (3): 326–332.
  • [15] Çeltek M., Şengül S., Dömekeli Ü. 2019. Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (3): 954–962.
  • [16] Celtek M., Sengul S., Domekeli U. 2017. Glass formation and structural properties of Zr50Cu50- xAlx bulk metallic glasses investigated by molecular dynamics simulations. Intermetallics, Elsevier Ltd; 84: 62–73.
  • [17] Allen M.P., Tildesley D.J. 1991. Computer simulation of liquids. Oxford, NY, USA: Clarendon Press.; 1991.
  • [18] Jones J.E., Ingham A.E. 1925. On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy. Proc. R. Soc. London Ser. A, 107: 363.
  • [19] Morse P.M. 1929. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Physical Review, 34 (1): 57–64.
  • [20] Daw M.S., Baskes M.I. 1984. Embedded atom method: derivation and application to impurities,surfaces and other defects in metal. Phsical Review B, 29 (12): 6443–6453.
  • [21] Daw M.S., Baskes M.I. 1983. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters, 50 (17): 1285–1288.
  • [22] Finnis M.W., Sinclair J.E. 1984. A simple empirical N -body potential for transition metals. Philosophical Magazine A, Taylor & Francis Group ; 50 (1): 45–55.
  • [23] Sutton A.P., Chen J. 1990. Long-range Finnis–Sinclair potentials. Philosophical Magazine Letters, 61 (3): 139–146.
  • [24] Rafii-Tabar H., Sutton A.P. 1991. Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys. Philosophical Magazine Letters, 63 (4): 217–224.
  • [25] Jacobsen K.W., Norskov J.K., Puska M.J. 1987. Interatomic interactions in the effective-medium theory. Physical Review B, 35 (14): 7423–7442.
  • [26] Cleri F., Rosato V. 1993. Tight-binding potentials for transition metals and alloys. Physical Review B, 48 (1): 22–33.
  • [27] Eskier U. Kalsiyum Nedir? (Özellikleri, Kullanımı, Faydaları). https://www.makaleler.com/kalsiyum-nedir-ozellikleri-kullanimi-faydalari. (Erişim Tarihi: 01.04.2021)
  • [28] Sheng H.W., Kramer M.J., Cadien A., Fujita T., Chen M.W. 2011. Highly optimized embedded- atom-method potentials for fourteen FCC metals. Physical Review B - Condensed Matter and Materials Physics, 83 (13): 1–20.
  • [29] Celtek M., Domekeli U., Sengul S. 2019. Moleküler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal Gelişimi ve Erime Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8 (2): 413–427.
  • [30] Celtek M., Sengul S., Domekeli U., Canan C. 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy. The European Physical Journal B, 89 (3): 1–6.
  • [31] Celtek M., Sengul S. 2018. The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations. Philosophical Magazine, 98 (9): 783–802.
  • [32] Senturk Dalgic S., Celtek M. 2011. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy. EPJ Web of Conferences, 15:03008.
  • [33] Senturk Dalgic S., Celtek M. 2011. Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation. Journal of Optoelectronics and Advanced Materials, 13 (11–12): 1563–1569.
  • [34] Senturk Dalgic S., Celtek M. 2011. Liquid -to-glass transition in bulk glass-forming Cu55- xZr45Agx alloys using molecular dynamic simulations. EPJ Web of Conferences, 15: 03009.
  • [35] Ju S.-P., Huang H.-H., Wu T.-Y. 2015. Investigation of the local structural rearrangement of Mg67Zn28Ca 5 bulk metallic glasses during tensile deformation: A molecular dynamics study. Computational Materials Science, 96: 56–62.
  • [36] Smith W., Forester T.R. 1996. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. Journal of Molecular Graphics, Elsevier; 14 (3): 136–141.
  • [37] Kittel C. 1986. Introduction to Solid State Physics. New York: John Wiley & Sons Inc.; 1986.
  • [38] Moitra A., Kim S.-G., Horstemeyer M.F. 2011. Structural and thermal properties of calcium using an MEAM potential. Calphad, 35 (2): 262–268.
  • [39] Kim K.-H., Jeon J.B., Lee B.-J. 2015. Modified embedded-atom method interatomic potentials for Mg–X (X=Y, Sn, Ca) binary systems. Calphad, 48: 27–34.
  • [40] E.A. Brandes G.B.B. 1998. Smithells Metals Reference Book. 7th baskı Butterworth Heinemann; 1998.
  • [41] Y. Liao. 2006. Practical Electron Microscopy and Database (Global Sino, 2006). http://www.globalsino.com/EM/.
  • [42] Çeltek M., Şengül S., Celtek M., Sengul S., Çeltek M., Şengül S. 2019. Effects of cooling rate on the atomic structure and glass formation process of Co90Zr10 metallic glass investigated by molecular dynamics simulations. Turkish Journal of Physics, 43 (1): 11–25.
  • [43] Waseda Y. 1981. The Structure of Non-Crystalline Materials-Liquids and Amorphous Solids. New York: London: McGraw-Hill.
  • [44] Rio B.G. del, González L.E. 2014. Orbital free ab initio simulations of liquid alkaline earth metals: from pseudopotential construction to structural and dynamic properties. Journal of Physics: Condensed Matter, 26 (46): 465102.
  • [45] Honeycutt J.D., Andersen H.C. 1987. Molecular Dynamics Study of Melting and Freezing of Small Lennard- Jones Clusters. Journal of Physical Chemistry, 91 (24): 4950–4963.
  • [46] Çelik F.A. 2021. Pd-Au Alaşımında Au Atomunun Konsantrasyon Etkisinin Polyhedron Topakları Oluşumu Üzerine Etkisinin Moleküler Dinamik Yöntemle İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10 (1): 9–15.
  • [47] Celik F.A. 2012. Süper Örgülü Yapıların Nano-Topak Özelliklerinin Benzetim Yöntemi İle İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 1 (2): 66–75.
  • [48] Çelik F.A., Kazanç S. 2010. CuNi Alaşımının Amorf Fazdan Kristal Faza Dönüşüm Sürecinde Mikro-Topak Özelliklerinin Moleküler Dinamik Yöntem ile İncelenmesi. Fırat Üniv. Fen Bilimleri Dergisi, 22 (2): 79–84.
  • [49] Celik F.A., Korkmaz E.T. 2020. Molecular dynamic investigation of the effect of atomic polyhedrons on crystallization mechanism for Cu-based Cu-Pd and Cu-Pt alloys. Journal of Molecular Liquids, 314: 113636.
  • [50] Hui L., Feng D., Xiufang B., Guanghou W. 2002. Molecular dynamics study of icosahedral ordering and defect in the Ni3Al liquid and glasses. Chemical Physics Letters, 354 (5–6): 466– 473.