Al 7075-T651 Alaşımının Tornalanmasında Elmas Benzeri Karbon (DLC) Kaplama Performansının İncelenmesi

Havacılık, biyomedikal ve otomotiv endüstrisinde alüminyum alaşımlarının kullanımının yaygınlaşmasıyla birlikte, bu malzemelerin işleme davranışları ve işleme problemleri son yıllarda ilgi konusu olmuştur. Kuru işlemede, alüminyum gibi yüksek plastisiteye sahip (sünek) metaller, takım-talaş ara yüzeyinde geniş temas alanı, yüksek sürtünme katsayısı ve sıvanma (adezyon) özellikleri ve buna bağlı olarak güçlü bir talaş yığılması (BUE) eğilimine sahiptir. Bu çalışmada alüminyum alaşımlarının bu problemine bir çözüm olarak son yıllarda yoğun çalışmaların yapıldığı DLC (diamond-like carbon) kaplamanın performansı Al 7075-T651 alaşımı için incelenmiştir. K10 standardına sahip sinterlenmiş karbür takım, üç farklı kaplama şartlarında (kaplamasız, ticari kaplamalı ve DLC kaplamalı) kullanılmıştır. Çalışmada DLC kaplama işlemi özgün olarak yapılmıştır. Bu takımların Al 7075-T651 alüminyum alaşımının işlenmesi sırasındaki performansı tornalama testleriyle gerçekleştirilmiştir. Tornalama işleminde talaş derinliği 1,5 mm sabit alınırken, 3 farklı kesme hızı (300, 400 ve 500 m/dk) ve 3 farklı ilerleme hızı (0,2-0,3 ve 0,4 mm/dev) seçilmiştir. Sonuç olarak, DLC kaplamanın sıvanma sorununa çözüm olabileceği, ancak kaplama parametrelerinin, kesici takım ve alaşımın sınıfına bağlı olarak optimize edilmesi gerektiği değerlendirilmiştir.

Investigation of Diamond-Like Carbon (DLC) Coating Performance in Turning of Al 7075-T651 Alloy

With the widespread use of aluminum alloys in the aerospace, biomedical and automotive industries, the machining behavior and machining problems of these materials have been of interest in recent years. In dry machining, metals with high plasticity (ductile) such as aluminum have a wide contact area at the tool-chip interface, high friction coefficient and smearing (adhesion) properties and a strong chip build-up (BUE) tendency. In this study, as a solution to this problem of aluminum alloys, the performance of DLC (diamond-like carbon) coating, which has been extensively studied in recent years, has been investigated for Al 7075-T651 alloy. Sintered carbide tool with K10 standard was used in three different coating conditions (uncoated, commercial coated and DLC coated). In the study, the DLC coating process was performed originally. The performance of these tools during the machining of Al 7075-T651 aluminum alloy has been performed by turning tests. While the depth of cut was fixed to 1.5 mm in the turning process, 3 different cutting speeds (300, 400, and 500 m / min) and 3 different feed rates (0.2-0.3 and 0.4 mm / d) were selected. As a result, it was evaluated that DLC coating could be a solution to the smearing problem, but coating parameters should be optimized depending on the grade of the cutting tool and the alloy.

___

  • [1] Sahoo A.P., Datta S. 2020. Dry Machining Performance of AA7075-T6 Alloy Using Uncoated Carbide and MT-CVD TiCN-Al2O3-Coated Carbide Inserts. Arabian Journal for Science and Engineering, 45:9777–9791.
  • [2] Mandal K.K., Mitra S. 2018. Experimental investigation on laser micro-machining of Al 7075 Alloy. Optics and Laser Technology, 107: 260-267.
  • [3] Editors; Carou D., Davim J.P. 2019. Machining of Light Alloys: Aluminum, Titanium and Magnesium. CRC Press Taylor Francis Group, Broken Sound Parkway NW.
  • [4] Hovsepian P.E., Luo Q., Robinson G., Pittman M., Howarth M., Doerwalt D., Tietema R., Sim W.M., Deeming A., Zeus T. 2006. TiAlN/VN superlattice structured PVD coatings: A new alternative in machining of aluminum alloys for aerospace and automotive components. Surface Coating Technology, 201: 265-272.
  • [5] Campell C.E., Bendersky L.A., Boettinger W.J., Ivester R. 2006. Microstructural characterization of Al-7075-T651 chips and work pieces produced by high-speed machining. Materials Science and Engineering A, 430: 15–26.
  • [6] Santos G.R., da Costa D.D., Amorim F.L., Torres R.D. 2007. Characterization of DLC thin film and evaluation of machining forces using coated inserts in turning of Al–Si alloys. Surface and Coating Technology, 202 (4-7): 1029-1033.
  • [7] Brzezinka T.L., Rao J., Paiva J.M., Kohlscheen Fox-Rabinovich G.S., Veldhuis S.C., Endrino J.L. 2019. DLC and DLC-WS2 Coatings for Machining of Aluminum Alloys, Coating. 9 (192): 1-15.
  • [8] Altunpak Y., Akbulut H. 2009. Effects of aging heat treatment on machinability of alümina short fiber reinforced LM 13 aluminum alloy. Int. J. Advanced Manufacturing Technology, 43:449- 454.
  • [9] Wieronski P., Pezda J., Ponikwia L. 2016. Effect of Heat Treatment on Machining Properties of the AlSi9Cu3(Fe) Alloy. Archives of Foundry Engineering, 16 (3): 137-140
  • [10] Jarco A., Pezda J. 2016. Effect of Different Variants of Heat Treatment on Mechanical Properties of the AlSi17CuNiMg Alloy. Archives of Foundry Engineering,16 (2): 41-44
  • [11] List G., Nouari M., Gehin D., Gomez S., Manaud J.P., Le Petitcorps Y., Girot F. 2005. Wear behaviour of cemented carbide tools in dry machining of aluminum alloy. Wear, 259: 1177-1189.
  • [12] Kouadri S., Necib K., Atlati S., Haddag B., Nouari M. 2013. Quantification of the chip segmentation in metal machining: Application to machining the aeronautical aluminum alloy AA2024-T351 with cemented carbide tools WC-Co. Int. J. Machine Tool & Manufacture, 64: 102-113.
  • [13] Salguero J., Batista M., Calamaz M., Girot F., Marcos M, 2013. Cutting Forces Parametric Model for the Dry High-Speed Contour Milling of Aerospace Aluminum Alloys. Procedia Engineering, 63: 735-742.
  • [14] Rao K.S.S., Allamraju K.V. 2017. Effect on Micro-Hardness and Residual Stress in CNC Turning of Aluminum 7075 Alloy. (ICMPC 2016) Materials Today:Proceedings, 4: 975-981.
  • [15] Wakabayashi T., ve Suda S. 2008. Environmentally friendly machining of aluminum using minimal quantity lubrication system. Proceedings of 41st CIRP Conference on Manufacturing Systems, Tokyo, Japan, 377-380.
  • [16] Sreejith P.S. 2008. Machining of 6061 aluminum alloy with MQL, dry and flooded lubricant conditions. Materials Letters, 62: 276-278.
  • [17] Çakır A., Yağmur S., Kavak N., Küçüktürk G., Şeker U. 2016. The effect of minimum quantity lubrication under different parameters in the turning of AA7075 and AA2024 aluminum alloys. Int. J. Manufacturing Technology, 84: 2515-2521.
  • [18] Singh T., Singh J., Singh M. 2016. Drilling of 6061 Aluminum Alloy with MQL, Dry and Flooded Cooling-Lubricant Conditions. IJRMET, 6 (2): 58-60.
  • [19] Roy P., Sarangi S.K., Ghosh A., Chattopadhyay A.K. 2009. Machinability study of pure aluminum and Al–12% Si alloys against uncoated and coated carbide inserts. Int. J. Refractory Metals & Hard Materials, 27: 535-544.
  • [20] Gangopadhyay S., Acharya R., Chattopadhyay A.K., Sargade V.G. 2010. Effect of cutting speed and surface chemistry of cutting tools on the formation of BUL or BUE and surface quality of the generated surface in dry turning of AA6005 aluminum alloy. Machining Science and Technology, 14: 208-223.
  • [21] Lei X., Shen B., Sun F. 2015. Optimization of diamond coated microdrills in aluminum alloy 7075 machining: A case study. Diamond & Related Materials, 54: 79-90.
  • [22] Patnaik S.K., Bhoi N.K., Padhi S., Sarangi S.K. 2018. Dry machining of aluminum for proper selection of cutting tool: tool performance and tool wear, Int. J. Advanced Manufacturing Technology, 98: 55-65.
  • [23] Miao J., Song J., Xue Y., Tong Y., Tang W., Lu F. 2004. Effect of a two-step pretreatment method on adhesion of CVD diamond coatings on cemented carbide substrates. Surface Coating & Technology, 187: 33-36.
  • [24] Kılıç D.S., Raman S. 2007. Observations of the tool–chip boundary conditions in turning of aluminum alloys. Wear 262: 889-904.
  • [25] Santos M.C., Machado A.R., Sales W.F., Barrozo M.A.S., Ezugvu E.O. 2016. Machining of aluminum alloys: a review. Int. J. Advanced Manufacturing Technology, 86: 3067-3080.
  • [26] Imbrogno S., Rinaldi S., Suarez A.G., Arrazola J., Umbrello D. 2018. High speed machinability of the aerospace alloy AA7075 T6 under different cooling condition. Proceedings of the 21st International ESAFORM Conference on Material Forming, AIP Conf. Proc. 1960, 070013; doi: 10.1063/1.5034909