The Gray-level Co-occurrence Matrix Approach to Measure Uniformity of Fuji Prescale Pressure Sensitive Film Samples

Fuji önölçekli basınca duyarlı filmler (FPPSF) genellikle biyomekanik uygulamalarda kullanılır. FPPSF'ler genellikle kalibrasyon yöntemlerine göre kalibre edilir. Bununla birlikte, literatürdeki araştırmacılar testlerine ve farklı işlemlerine dayanarak farklı kalibrasyon eğrileri elde ederler. Bu çalışmanın amacı, deneysel olarak FPPSF numuneleri kullanılarak elde edilen kalibrasyon lekelerini (verilerini) incelemektir. Numune boyalarının homojenliğini değerlendirmek için gri düzey eş-oluşum matrisi (GLCM) kullanıldı. Ayrıca, üretilen kalibrasyon verileri de mevcut literatürde sunulan ilgili kalibrasyon eğrileriyle istatistiksel olarak karşılaştırılır ve doğrulanır. Sonuç olarak, GLCM'nin enerji özellik parametresi, üretilen eğrinin doğruluğunu gerçekleştirmek için örneklerin görüntü düzgünlüğünü kontrol etmek için uygulanabilir.

A Statistical Approach To Measure Uniformity Of Fuji Prescale Pressure Sensitive Film Samples

Fuji prescale pressure sensitive films (FPPSF) are generally used in biomechanical applications to measure the pressure distributions and the contact areas between two contact surfaces as in coloured stains. FPPSFs are usually calibrated based on the calibration methods using regression analysis to obtain a specific calibration curve. However, researchers in literature achieve different calibration curves based upon their tests and different processes. The purpose of this study is to examine the calibration stains (data) obtained experimentally using the FPPSF samples compressed between two smooth flat surfaces to indicate contact pressures. The gray-level co-occurrence matrix (GLCM) was used to evaluate the uniformity of the sample stains for quantitative evaluation of uniform distribution of the sample stains. Moreover, the generated calibration data is also compared and validated statistically with the related calibration curves presented in the available literature. As a result, the parameter of energy property of GLCM can be practicable to check the image uniformity of samples in order for performing the accuracy of a generated curve.

___

  • [1] Cada G., Smith J., Busey J. 2005. Use of Pressure-Sensitive Film to Quantify Sources of Injury to Fish. North American Journal of Fisheries Management, 25:57-66.
  • [2] Bakar A., Ouyang H., Siegel J.E. 2005. Brake pad surface topography Part I: contact pressure distribution. SAE Technical Paper, 2005-01-3941.
  • [3] Costanzi M., Rouillard V., Cebon D. 2006. Effects of tyre contact pressure distribution on the deformation rates of pavements. Proceedings of the 19th Symposium of the International Association for Vehicle System Dynamics: Taylor and Francis;. p. 892-903.
  • [4] Joo, B. S., Gweon, J., Park, J., Song, W., Jang, H. 2021. The effect of the mechanical property and size of the surface contacts of the brake lining on friction instability. Tribology International, 153, 106583.
  • [5] Aymerich F, Pau M, Ginesu F. 2003. Evaluation of Nominal Contact Area and Contact Pressure Distribution in a Steel-Steel Interface by Means of Ultrasonic Techniques. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 46:297-305.
  • [6] Lee C-Y., Lin C-S., Jian R-Q., Wen C-Y. 2006. Simulation and experimentation on the contact width and pressure distribution of lip seals. Tribology International, 39:915-20.
  • [7] Cheng C.K, Huang C.H, Liau J.J. 2003. The influence of surgical malalignment on the contact pressures of fixed and mobile bearing knee prostheses--a biomechanical study. Clinical Biomechanics, 18:231-6.
  • [8] Wolchok J.C., Hull M.L., Howell S.M. 1998. The effect of intersegmental knee moments on patellofemoral contact mechanics in cycling. Journal of Biomechanics, 31:677-83.
  • [9] Konrath G.A., Hamel A.J., Olson S.A., Bay B., Sharkey N.A. 1998. The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip. The Journal of bone and joint surgery American volume, 80:1781-8.
  • [10] Skie M., Grothaus M., Ciocanel D., Goel V. 2007. Scaphoid excision with four-corner fusion: a biomechanical study. Hand,194-8.
  • [11] Sparks D.R., Beason D.P., Etheridge B.S., Alonso J.E., Eberhardt A.W. 2005. Contact pressures in the flexed hip joint during lateral trochanteric loading. Journal of orthopaedic research, 23:359-66.
  • [12] Thomas J.L., Moeini R., Soileau R. 2000. The effects on subtalar contact and pressure following talonavicular and midtarsal joint arthrodesis. The Journal of Foot and Ankle Surgery, 39:78-88.
  • [13] Field J.R., Hearn T.C., Caldwell C.B. 1998. The influence of screw torque, object radius of curvature, mode of bone plate application and bone plate design on bone-plate interface mechanics. Injury. 29:233-41.
  • [14] Devocht J.W., Goel V.K., Zeitler D.L., Lew D. 2001. Experimental validation of a finite element model of the temporomandibular joint. Journal of oral and maxillofacial surgery, 59:775-8.
  • [15] Chin M.V., Donohue J.M., Erdman A.G., Oegema T.R., Thompson R.C. 1986. Biomechanical Analysis of an Adult Canine Patella under an indirect Blunt Trauma. ORS Trans, 11.
  • [16] Olson S.A., Bay B.K., Chapman M.W., Sharkey NA. 1995. Biomechanical consequences of fracture and repair of the posterior wall of the acetabulum. The Journal of bone and joint surgery American volume, 77:1184-92.
  • [17] Wang C-L., Cheng C-K., Chen C-W., Lu C-M., Hang Y-S., Liu T-K. 1995. Contact areas and pressure distributions in the subtalar joint. Journal of Biomechanics, 28:269-79.
  • [18] Horibe, Y., Matsuo, K., Ikebe, K., Minakuchi, S., Sato, Y., Sakurai, K., Ueda, T. 2021. Relationship between two pressure-sensitive films for testing reduced occlusal force in diagnostic criteria for oral hypofunction. Gerodontology.
  • [19] Bobko, A., Edwards, G., Rodriguez, J., Southworth, T., Miller, A., Peresada, D., Goldberg, B. 2021. Effects of implant rotational malposition on contact surface area after implantation of the augmented glenoid baseplate in the setting of glenoid bone loss. International Orthopaedics, 1-6.
  • [20] Gu, Y., Bai, Y., Xie, X. 2021. Bite Force Transducers and Measurement Devices. Frontiers in Bioengineering and Biotechnology, 9, 253.
  • [21] Saiz, A., Delman, C. M., Haffner, M., Wann, K., McNary, S., Szabo, R. M., Bayne, C. O. 2021. The Biomechanical Effects of Simulated Radioscapholunate Fusion with Distal Scaphoidectomy, 4-Corner Fusion with Complete Scaphoidectomy, and Proximal Row Carpectomy Compared to the Native Wrist. The Journal of Hand Surgery.
  • [22] Idris, R. I., Shoji, Y., Lim, T. W. 2021. Occlusal force and occlusal contact reestablishment with resin-bonded fixed partial dental prostheses using the Dahl concept: A clinical study. The Journal of prosthetic dentistry.
  • [23] Ayna, M., Karayürek, F., Jepsen, S. Emmert M., Acil Y., Wiltfang J., Gülses A., 2021. Six-year clinical outcomes of implant-supported acrylic vs. ceramic superstructures according to the All-on-4 treatment concept for the rehabilitation of the edentulous maxilla. Odontology, 109(4), 930–940.
  • [24] Liggins A.B., Stranart J.C.E., Finlay J.B., Rorabeck C.H. 1992. Calibration and Manipulation of Data from Fuji Pressure-Sensitive Film. Clin Asp B., 3:61-70.
  • [25] Muriuki M.G., Gilbertson L.G., Harner C.D. 2009. Characterization of the performance of a custom program for image processing of pressure sensitive film. Journal of biomechanical engineering, 131(1):014503.
  • [26] Hasler E.M., Herzog W., Fick G.H. 1996. Appropriateness of plane pressure-sensitive film calibration for contact stress measurements in articular joints. Clinical Biomechanics,11(6):358-360.
  • [27] Liggins A.B., Surry K, Finlay J.B. 1995. Sealing Fuji Prescale pressure sensitive film for protection against fluid damage: the effect on its response. Strain, 31:57-62.
  • [28] Wang C.L., Cheng C.K., Chen C.W., Lu C.M., Hang Y.S., Liu T.K. 1995. Contact areas and pressure distributions in the subtalar joint. Journal of Biomechanics, 28(3):269-279.
  • [29] Mutlu I., Ugur L., Celik T., Buluc L., Muezzinoglu U.S., Kisioglu Y. 2014. Evaluation of contact characteristics of a patient-specific artificial dysplastic hip joint. Acta Bioeng Biomech, 16:111-120.
  • [30] Bachus K.N., DeMarco A.L., Judd K.T., Horwitz D.S., Brodke D.S. 2006. Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems. Medical Engineering & Physics, 28:483-488.
  • [31] Fuji Photo Film Co. Ltd. Pressure measuring film-FUJI prescale film instruction manual.
  • [32] Introduction to SAS. UCLA: Statistical Consulting Group; 2013.
  • [33] Haralick R.M, Shanmugam K., Dinstein I. 1973. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, Smc3:610-621.
  • [34] Harris M.L., Morberg P., Bruce W.J.M., Walsh W.R. 1999. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. Journal of Biomechanics, 32:951-958.
  • [35] Balter S. 1993. Fundamental properties of digital images. Radiographics, 13:129-141.
  • [36] Spring K.R., Russ J.C., Davidson M.W. Basic Properties of Digital Images, Concepts in Digital Imaging Technology. Hamamatsu Learning Center.
  • [37] Mutlu I., Kisioglu Y. 2013. Higher order regression functions result better fit for the calibration curve. Journal of Orthopaedic Research, 31:1164-.
  • [38] Liggins A.B., Hardie W.R., Finlay J.B. 1995. The spatial and pressure resolution of Fuji pressure-sensitive Film. Experimental Mechanics., 35:166-173.
  • [39] Liggins A.B., Finlay J.B. 1997. Image-averaging in the analysis of data from pressure-sensitive film. Exp Techniques, 21:19-22.
  • [40] Singerman R., Pedersen D., Brown T. 1987. Quantitation of pressure-sensitive film using digital image scanning. Experimental Mechanics, 27:99-105.