Mekanik Öğütme ve Basınçsız Sinterleme ile Al-SiC Kompozitlerin Üretimi ve Karakterizasyonu

Bu çalışmada, mekanik öğütme ile üretilen alüminyum kompozitlerde SiC miktarının ve öğütme süresinin mikro yapı, yoğunluk ve sertlik üzerine etkisi incelenmiştir. Çalışma kapsamında alüminyum kompozitler, farklı miktarlarda (%5, %10, %15 ve %20) SiC ilave edilerek farklı sürelerde (30, 60, 90 ve 120 dak) mekanik öğütülmüştür. Titreşimli değirmende yapılan kompozitlerin üretiminde öğütme elemanı olarak 6 mm çapında yüksek kromlu çelik bilya, 10:1 bilya-toz oranı ve %2 stearik asit (işlem kontrol kimyasalı) kullanılmıştır. Kompozit tozların üretimi argon ortamında yapılmıştır. Üretilen kompozit tozlar tarama elektron mikroskobu, EDAX analizleri, optik mikroskop ve toz boyut analizörü kullanılarak karakterize edilmiştir. Yapılan çalışmalar sonucunda, ilave edilen SiC miktarı ve öğütme süresi arttıkça toz boyutunda azalma görülürken, sertlik değerlerinde artış görülmektedir. Bununla birlikte ilave edilen SiC miktarı arttıkça da alüminyum kompozitlerin yoğunlukları artmaktadır.

Production and Characterization of Al-SiC Composites Prepared by Mechanical Milling and Pressureless Sintering

This study investigates the effect of SiC amount and milling time on microstructure, density and hardness in thealuminum composites produced by mechanical milling. In the study, aluminum composites were mechanicalmilled for different periods (30, 60, 90 and 120 min), adding SiC at different amounts (5, 10, 15 and 20 wt. %).High chromium steel balls with a diameter of 6 mm, a ratio of 10:1 ball-powder and 2% stearic acid were used asmilling component in the production of composites in a vibrating mill. The production of composite powders wascarried out in an argon atmosphere. The composite powders produced were characterized using scanning electronmicroscopy, EDS analysis, optical microscope and powder size analyzer. As a result, it was observed that as theamount of added SiC and milling time increased, the powder size decreased, and the hardness values increased. Inaddition, as the amount of added SiC increased, the densities of aluminum composites increased.

___

  • [1] Prabhu B., Suryanarayana C., An L., Vaidyanathan R. 2006. Synthesis and Characterization of High Volume Fraction Al–Al2O3 Nanocomposite Powders By High-Energy Milling. Materials Science and Engineering: A, 425 (1-2): 192-200.
  • [2] Torralba J.M., Velasco F., Costa C.E., Vergara I., Cáceres D. 2002. Mechanical Behaviour of The Interphase Between Matrix and Reinforcement Of Al 2014 Matrix Composites Reinforced With (Ni3Al) p. Composites Part A: Applied Science and Manufacturing, 33 (3); 427-434.
  • [3] Smagorinski M.E., Tsantrizos P. G., Grenier S., Cavasin A., Brzezinski T., Kim G. 1998. The Properties and Microstructure of Al-Based Composites Reinforced With Ceramic Particles. Materials Science and Engineering: A, 244 (1): 86-90.
  • [4] Özyürek D., Tekeli S. 2010. An Investigation on Wear Resistance of SiCp-Reinforced Aluminium Composites Produced by Mechanical Alloying Method, Science and Engineering of Composite Materials, 17 (1): 31-38.
  • [5] Erek H.B., Ozyurek D., Asan A. 2017. Electrical Conductivity and Corrosion Performances of In Situ and Ex Situ AA7075 Aluminum Composites, Acta Physica Polonica A, 131 (1): 153-155.
  • [6] Sundararajan V. 2017. Aluminum Composites In Aerospace Applications. http://satyamevajayate.net/almmc.htm, (Erişim tarihi: 4.12.2017).
  • [7] Mortensen A., San-Marchi C., Degischer H.P. 2002. Glossary of Terms Specific to Metal Matrix Composites. MMC-Assess Thematic Network.
  • [8] Rajan T.P.D., Pillai R.M., Pai B.C. 1998. Reinforcement Coatings and Interfaces ın Aluminium Metal Matrix Composites, Journal of Materials Science, 33 (14): 3491-3503.
  • [9] Yu P., Mei Z., Tjong S.C. 2005. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles, Materials Chemistry and Physics, 93 (1): 109-116.
  • [10] Wannasin J., Flemings M.C. 2005. Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process, Journal of Materials Processing Technology, 169 (2): 143-149.
  • [11] Arifin A., Sulong A.B., Muhamad N., Syarif J., Ramli M.I. 2014. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review, Materials & Design, 55: 165-175.
  • [12] Natarajan S., Narayanasamy R., Babu S.K., Dinesh G., Kumar B.A., Sivaprasad K. 2009. Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures, Materials & Design, 30 (7): 2521-2531.
  • [13] Ozyurek D., Ciftci I. 2011. An investigation into the wear behaviour of TiB2 particle reinforced aluminium composites produced by mechanical alloying, Science and Engineering of Composite Materials, 18 (1-2): 5-12.
  • [14] Deuis R.L., Subramanian C., Yellup J.M. 1998. Three-body abrasive wear of composite coatings in dry and wet environments, Wear, 214 (1): 112-130.
  • [15] Parvin N., Assadifard R., Safarzadeh P., Sheibani S., Marashi P. 2008. Preparation and mechanical properties of SiC-reinforced Al6061 composite by mechanical alloying, Materials Science and Engineering: A, 492 (1-2): 134-140.
  • [16] Khadem S.A., Nategh S., Yoozbashizadeh H. 2011. Structural and morphological evaluation of Al– 5 vol.% SiC nanocomposite powder produced by mechanical milling, Journal of Alloys and Compounds, 509 (5): 2221-2226.
  • [17] Şimşek İ., Yıldırım M., Tunçay T., Özyürek D., Şimşek D. 2018. Mekanik alaşımlama/öğütme yöntemi ile üretilen Al-SiC kompozitlerin incelenmesi, Technological Applied Sciences, 13 (2): 165-171.
  • [18] Zhao N., Nash P., Yang X. 2005. The Effect of Mechanical Alloying on SiC Distribution and The Properties of 6061 Aluminum Composite, Journal of Materials Processing Technology, 170 (3): 586-592.
  • [19] Suryanarayana C. 2001. Mechanical alloying and milling, Progress in materials science, 46 (1-2): 1-184.
  • [20] Sankar R., Singh P. 1998. Synthesis of 7075 Al/SiC Particulate Composite Powders by Mechanical Alloying, Materials Letters, 36 (1-4): 201-205.
  • [21] Campbell G.T., Raman R., Fields R.J. 2016. Optimum Press and Sinter Processing For Aluminum/SiC Composites. Aluminum Powder Metallurgy Conference.