Kompozit Fren Balatasında Bakır Oranının Frenleme Karakteristiğine Etkisi

Taşıtların durması veya yavaşlatılması için fren sistemi kullanılmaktadır. Fren sisteminde yer alan balatalar diskesürtünerek aracın durmasını veya yavaşlamasını sağlamaktadır. Balatalar birden fazla malzemenin karışımındanoluşmaktadır. Bakır, fren balatalarında metalik sürtünme malzemesi olarak kullanılmaktadır. Fren balatalarındakullanılan bakır termal iletkenliğinin yanında iyi bir fren performansı da sağlamaktadır. Bu çalışmada, frenbalatalarında kullanılan bakırın frenleme performansına etkisi araştırılmıştır. Hazırlanan balata karışımı içerisine%5, %10 ve %15 oranlarında bakır ilave edilerek üç farklı balata üretilmiştir. Balata numunelerinin sürtünmekatsayısı, aşınma, yoğunluk, sertlik gibi fiziksel ve mekanik özellikleri belirlenmiştir. Enerji DağılımSpektrometresi (EDS) ve Taramalı Elektron Mikroskobu (SEM) ile morfolojik özellikleri incelenmiştir. Bakıroranı arttıkça balata performansının iyileştiği görülmüştür.

The Effect of Copper Ratio on Braking Characteristics of Composite Brake Pads

The brake system is used to stop or slow down the vehicles. The brake linings in the brake system rub against the disc and allow the vehicle to stop or slow down. The brake linings consist of mixture of more than one material. Copper is used as metallic friction material in brake pads. The copper used in the brake linings provides good braking performance as well as thermal conductivity. In this study, the effect to braking performance of copper is used in the brake pad was investigated. Three different brake lining were produced by adding 5%, 10% and 15% copper to the prepared brake lining mix. The physical and mechanical properties such as friction coefficient, wear, density and hardness of brake lining samples were determined. Morphological properties were examined by Energy-Dispersive X-Ray Spectroscopy (EDS) and Scanning Electron Microscopy (SEM). It has been observed that the performance of brake lining has improved as the copper ratio increases.

___

  • [1] Yawas D.S., Aku S.Y., Amaren S.G. 2016. Morphology and Properties of Periwinkle Shell Asbestos-Free Brake Pad. Journal of King Saud University Engineering Sciences, 28 (1): 103- 109.
  • [2] Sugozu I., Mutlu I., Sugozu B. 2018. The Effect of Ulexite to The Tribological Properties of Brake Lining Materials. Polymer Composites, 39 (1): 55-62.
  • [3] Mahale V., Bijwe J., Sinha S. 2017. Influence of Nano-Potassium Titanate Particles on The Performance of Nao Brake-Pads. Wear, 376–377: 727-737.
  • [4] Li Z., He M., Dong H., Shu Z., Wang X. 2018. Friction Performance Assessment of Non-Asbestos Organic (Nao) Composite to Steel Interface and Polytetrafluoroethylene (PTFE) Composite to Steel Interface: Experimental Evaluation and Application in Seismic Resistant Structures. Construction and Building Materials, 174: 272-283.
  • [5] Kumar M., Bijwe J. 2011. Non-Asbestos Organic (NAO) Friction Composites: Role of Copper; Its Shape and Amount. Wear, 270 (3–4): 269-280.
  • [6] Sugözü B. 2018. Tribological Properties of Brake Friction Materials Containing Fly Ash. Industrial Lubrication and Tribology, 70 (5): 902-906.
  • [7] Ikpambese K.K., Gundu D.T., Tuleun L.T. 2016. Evaluation of Palm Kernel Fibers (PKFs) For Production of Asbestos-Free Automotive Brake Pads. Journal of King Saud University Engineering Sciences, 28 (1): 110-118.
  • [8] Sugozu B., Daghan B., Akdemir A., Ataberk N. 2016. Friction and Wear Properties of Friction Materials Containing Nano/Micro-Sized SiO2 Particles. Industrial Lubrication and Tribology, 68 (2): 259-266.
  • [9] Kukutschowa J., Roubicek V., Malachova K., Pavlickova Z., Holusa R., Kubackova J., Micka V., MacCrimmon D., Filip P. 2009. Wear Mechanism in Automotive Brake Materials, Wear Debris and its Potential Environmental Impact. Wear, 267: 807–817.
  • [10] Ho S.C., Lin J.H.C., Ju C.P. 2005. Effect of Fiber Addition on Mechanical and Tribological Properties of A Copper/Phenolic Based Friction Material. Wear, 258: 861–869.
  • [11] Handa Y., Kato T. 1996. Effects of Cu Powder BaSO4 and Cashew Dust on The Wear and Friction Characteristics of Automotive Brake Pads. Tribology Transactions, 39 (2): 346-353.
  • [12] TS 555 (Turkish Standard), 1992. Highway vehicles, brake systems, brake pads for frictional brake, Turkey.
  • [13] Nesrine H., Cristol A.L., Najjar D., Elleuch R., Desplanques Y. 2014. Influence of Hot Molding Parameters on Tribological and Wear Properties of a Friction Material. Tribology Transactions, 57 (3): 387-395.
  • [14] Tabor D. 1996. Friction as a Dissipated Process. Friction of Organic Polymers in Fundamentals of Friction. Macroscopic and Microscopic Processes, 220 (3).
  • [15] Jang H., KO K., Kım S.J., Basch R.H., Fash J.W. 2004. The Effect of Metal Fibers on The Friction Performance of Automotive Brake Friction Materials. Wear, 256 (3/4): 406–414.
  • [16] Anderson A.E. 1992. Friction, Lubrication and Wear technology. ASM Handbook, 18: 569-577.
  • [17] Stachowiak G.W., Batchelor A.W. 2001. Engineering Tribology. Heineman, Boston, 1: 36-44.
  • [18] Sugozu I., Mutlu I., Sugozu B. 2016. The Effect of Colemanite on The Friction Performance of Automotive Brake Friction Materials. Industrial Lubrication and Tribology, 68 (1): 92-98.
  • [19] Leonardi M., Menapace C., Matějka V., Gialanella S., Straffelini G. 2018. Pin-on-Disc Investigation on Copper-Free Friction Materials Dry Sliding Against Cast Iron. Tribology International, 119: 73-81.
  • [20] Ravikiran A., Jahanmir S. 2001. Effect of Contact Pressure and Load on Wear of Alumina. Wear, 251 (1–12): 980-984
  • [21] Shin M.W., Cho K.H., Lee W.K., Jang H., 2010. Tribological Characteristics of Binder Resins for Brake Friction Materials at Elevated Temperatures. Tribology Letters, 38 (2): 161-168.
  • [22] Hooton N.A. 1969. Metal-Ceramic Composites in High-Energy Friction Applications. Bendix Technical Journal, 55-61.