Investigating the Effect of Masonry Infill Walls on the 2D RC Structural Systems with Asymmetry along the Elevation

Güçlendirilmemiş yığma duvar dolgu panelleri kullanılarak oluşturulan betonarme çerçeveler, tüm dünyada yaygın olarak kullanılan yapısal sistemleridir. Birçok analitik araştırma ve deneysel gözlem, yığma dolgu duvarların yapıların genel rijitliğine ve dayanımına katkısını vurgulasa da, mühendisler tarafından tasarım ve analiz hesaplamalarında etkileri dikkate alınmamaktadır. Dolgu duvarların gerçek davranışlarında farklılıklar bulunması ve dolgu duvarları modelleme ve kapasite hesaplamalarında tanımlamak için kullanılan farklı parametreler nedeniyle, bu duvarlar yapısal sistemlerin genel tepkisi üzerinde öngörülemeyen etkilere sahiptirler. Bu çalışmanın amacı, deprem sırasında gerçekleşebilecek bir göçme mekanizması senaryosunun artımlı eşdeğer statik yük uygulanarak simülasyonudur. Dolgu duvarları eşdeğer diyagonal basınç elemanları kullanılarak temsil edilmiş ve yükseklik boyunca asimetrik olarak yerleştirilen güçlendirilmemiş yığma dolgu duvarların betonarme yapı sistem davranışı üzerindeki etkileri irdelenmiştir. Sadece bir çapraz destek kullanmanın etkilerine odaklanmak için yapısal sisteme eşdeğer statik yük +/- X yönlerinde uygulanmıştır. Dolgu duvarların yapısal sistemin kat yer değiştirmelerini azaltmada faydalı etkilere sahip olduğu gözlemlenmiştir. Bu durum dolgu duvarların yapısal sistem yanal rijitliği üzerinde katkı sağlayıcı etkisine bağlanmaktadır. Ayrıca, eşdeğer statik yükteki her artış için eksenel kuvvetler ve eğilme momenti diyagramları çizilmiştir, bu da yığma dolgu duvarlarının önemini anlamak için fikir verebilir.

Investigating the Effect of Masonry Infill Walls on the 2D RC Structural Systems with Asymmetry along the Elevation

Reinforced concrete (RC) frames with unreinforced masonry infill panels are common structural building systems all over the world. Although many analytical investigations and experimental observations emphasize the contribution of masonry infills to the overall stiffness and strength of the structures, their effects are not considered by the engineers in the design and the analysis calculations. Due to the variations in the actual behavior of the infill walls and using different parameters to define the infill walls in modeling and capacity calculations, they have unpredictable effects on the global response of the structural systems. The purpose of this study is the simulation of a collapse mechanism scenario that may be developed during the earthquake through applying incremental equivalent static load. Infill panels were represented using equivalent compression diagonal struts and their effects on the behavior of RC structural systems having asymmetrical placement of unreinforced masonry infill walls along the elevation has been scrutinized. The equivalent static load was applied to the structural system in +/-X directions to focus on the effects of using only one diagonal strut. It has been observed that the influence of the infill panels on the structural system has beneficial effects in decreasing the story drift, which may be attributed to the contributory effect of the infill panels on the lateral stiffness of the structural system. Furthermore, the axial forces and bending moment diagrams have been plotted for each increment in the equivalent static load, which can give insight to understand the significance of masonry infill walls.

___

  • [1] Mosalam K. M., Günay S. 2015. Progressive Collapse Analysis of Reinforced Concrete Frames with Unreinforced Masonry Infill Walls Considering In-plane/Out-of-plane Interaction. Earthquake Spectra, 31 (2): 921–943.
  • [2] Mosalam K. M., White R. N., Gergely P. 1997 (a). Seismic Evaluation of Frames with Infill Walls Using Pseudo-Dynamic Experiments. In: National Center for Earthquake Engineering Research, Buffalo, NY, USA, NCEER-97-0020.
  • [3] Mosalam K. M., White R. N., Gergely P. 1997 (b). Seismic Evaluation of Frames with Infill Walls Using Quasi-Static Experiments. In: National Center for Earthquake Engineering Research, Buffalo, NY, USA, NCEER-97-0019.
  • [4] Korkmaz K. A., Demir F., Sivri M. 2007. Earthquake Assessment of R/C Structures with Masonry Infill Walls. International Journal of Science and Technology, 2 (2): 155–164.
  • [5] FEMA 356. 2000. Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Federal Emergency Management Agency, USA, 1–518.
  • [6] Turkish Building Seismic Code. 2018. Prime Ministry, Disaster and Emergency Management Presidency (AFAD), Ankara, 1–395.
  • [7] Aksoylu C., Arslan M. H. 2019. Çerçeve+ Perde Türü Betonarme Binalarin Periyod Hesaplarinin TBDY-2019 Yönetmeliğine Göre Ampirik Olarak Değerlendirilmesi. Uludağ University Journal of the Faculty of Engineering, 24(3), 365-382.
  • [8] Aksoylu C., Mobark A., Hakan Arslan M., Hakkı Erkan İ. 2020. A Comparative Study on ASCE 7-16, TBEC-2018 and TEC-2007 for Reinforced Concrete Buildings. Revista De La Construcción, 19(2), 282-305.
  • [9] Sezer R., Aksoylu C., Kara N. 2016. Investigation of Behavior of Structures According to Different Local Site Classes for L Type Reinforced Concrete Frame Building Having A1 and A3 Irregularities. TOJSAT, 6(1), 21-32.
  • [10] Aksoylu C., Arslan M. H. 2021. 2007 ve 2019 Deprem Yönetmeliklerinde Betonarme Binalar İçin Yer Alan Farklı Deprem Kuvveti Hesaplama Yöntemlerinin Karşılaştırılmalı Olarak İrdelenmesi. International Journal of Engineering Research and Development, 13(2), 359-374.
  • [11] Aksoylu C., Arslan, M. H. 2019. Çerçeve Türü Betonarme Binaların Periyod Hesaplarının Farklı Ampirik Bağıntılara Göre İrdelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(2), 569-581.
  • [12] El-Dakhakhni W. W., Elgaaly M., Hamid A. A. 2003. Three-Strut Model for Concrete Masonry-Infilled Steel Frames. Journal of Structural Engineering, 129 (2): 177–185.
  • [13] Madan A., Reinhorn A. M., Mander J. B., Valles R. E. 1997. Modeling of Masonry Infill Panels for Structural Analysis. Journal of Structural Engineering, 123 (10): 1295–1302.
  • [14] Mohyeddin-Kermani A., Goldsworthy H. M., Gad E. 2008. A Review of the Seismic Behaviour of RC Frames with Masonry Infill. Australian Earthquake Engineering Society Conference, 20-23 Novamber, Ballarat, Victoraia, 38.
  • [15] Smith B. S. 1962. Lateral Stiffness of Infilled Frames. Journal of the Structural Division, 88 (6): 183–199.
  • [16] Das D., Murty C. V. R. 2004. Brick Masonry Infills in Seismic Design of RC Framed Buildings: Part 1-Cost implications. Indian Concrete Journal, 78 (7): 39–44.
  • [17] Rodrigues H., Varum H., Costa A. 2010. Simplified Macro-Model for Infill Masonry Panels. Journal of Earthquake Engineering, 14 (3): 390–416.
  • [18] CSI. 2020. Integrated Software for Structural Analysis and Design. SAP2000 v22.1.0. Computers and Structures Inc. Berkeley, CA, USA.
  • [19] Holmes M. 1961. Steel Frames with Brickwork and Concrete Infilling. Proceedings of the Institution of Civil Engineers, 19 (4): 473–478.
  • [20] Stafford S. B., Carter C., Mallick D. 1970. Discussion a Method of Analysis for Infilled Frames. Proceedings of the Institution of Civil Engineers, 46 (2): 229–231.
  • [21] Mainstone R. J., Weeks G. A. 1970. The Influence of a Bounding Frame on the Racking Stiffnesses and Strengths of Brick Walls. 2nd International Brick Masonry Conference, Building Research Establishment, 12-15 April,Watford, England, 165–171.
  • [22] Crisafulli F. J., Carr A. J. 2007. Proposed Macro-Model for the Analysis of Infilled Frame Structures. Bulletin of the New Zealand Society for Earthquake Engineering, 40 (2): 69–77.
  • [23] Kaushik H. B., Rai D. C., Jain S. K. 2007. Stress-Strain Characteristics of Clay Brick Masonry under Uniaxial Compression. Journal of Materials in Civil Engineering, 19 (9): 728–739.
  • [24] Panagiotakos T. B., Fardis M. N. 1996. Seismic Response of Infilled RC Frame Structures. 11th World Conference on Earthquake Engineering, 23-28 June, Acapulco, Mexico, 225.
  • [25] Panagiotakos T. B., Fardis M. N. 1994. Proposed Nonlinear Strut Models for Infill Panels. University of Patras, Greece, 1st Year Progress Report of HCM-PREC8 Project.
  • [26] Tsai M. H., Huang T. C. 2011. Numerical Investigation on the Progressive Collapse Resistance of a RC Building with Brick Infills under Column Loss. International Journal of Engineering and Applied Sciences, 7 (1): 27-34.
  • [27] Dolšek M., Fajfar P. 2008. The Effect of Masonry Infills on the Seismic Response of a Four- Storey Reinforced Concrete Frame - A Deterministic Assessment. Engineering Structures, 30 (7), 1991–2001.
  • [28] Žarnić R., Gostič S. 1997. Masonry Infilled Frames As an Effective Structural Sub-Assemblage. Seismic Design Methodologies for the next Generation of Codes, CRC Press, Florida, USA, 335–346.
  • [29] Aksoylu C., Kara N. 2020. Strengthening of RC Frames by Using High Strength Diagonal Precast Panels. Journal of Building Engineering, 31, 101338.
  • [30] Aksoylu C., Kara N. 2019. Güçlendirme Tekniği Olarak Yeni Nesil Ön Üretimli Beton Panel Uygulamasının Araştırılması. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 7(2), 346-361.
  • [31] Saneinejad B. A., Hobbs B. 1995. Inelastic Design of Infilled Frames. Journal of Structural Engıneerıng J., 121 (4): 634–650.
  • [32] Haldar P. 2012. Modeling of URM Infills and Their Effect on Seismic Behavior of RC Frame Buildings. The Open Construction and Building Technology Journal, 6 (1): 35–41.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü