Polistiren Kaplı Küresel Şekilli Alüminyum Köpüklerin Ezilme Davranışlarının Araştırılması

Bu çalışmada, polistiren ile kaplanmış ve kaplanmamış küresel şekilli alüminyum köpük parçaların sıkıştırma yükü altındaki ezilme davranışları incelenmiştir. Toz metalurjisi yöntemi ile üretilen 8 mm ve 10 mm çaplarındaki küresel şekilli alüminyum köpük parçalar enjeksiyon kalıplama işlemiyle polistiren ile kaplanmıştır. Üretilen köpükler daha sonra 1 mm/dak deformasyon hızında oda sıcaklığında yarı-statik sıkıştırma testlerine tabi tutulmuştur. Elde edilen deneysel sonuçlara göre, polistiren kaplamalar köpüklerin enerji sönümleme kapasitelerini yaklaşık %115 arttırırken, yoğunluğu da yaklaşık %50 oranında arttırmıştır.

Investigation of Crushing Behavior of Polystyrene Coated Spherical Shaped Aluminum Foams

In this study, the crushing behavior of spherically shaped aluminum foam pieces coated with polystyrene anduncoated under compression load was investigated. The spherical shaped aluminum foam parts produced bypowder metallurgy with diameters of 8 mm and 10 mm were coated with polystyrene by the injection moldingprocess. The obtained foam elements were then subject to quasi-static compression tests at room temperature witha constant crosshead speed of 1 mm/min. According to the experimental results, polystyrene coatings increasedthe energy damping capacity of the foams by approximately 115% while increasing the density by about 50%.

___

  • [1] Bafti H., Habibolahzadeh A. 2013. Compressive properties of aluminum foam produced by powder-carbamide space route. Materials and Design, 52: 404-411.
  • [2] Jeon I., Asahina T. 2005. The effect of structural defects on the compressive behavior of closedcell Al foam. Acta materialia, 53: 3415-3423.
  • [3] Sun D.X., Zhao Y.Y. 2003. Static and dynamic energy absorption of Al foams produced by a sintering and dissolution process. Metallurgical and Materials Transactions B, 34: 69-74.
  • [4] Duarte I., Oliveira M. 2012. Aluminium alloy foams: production and properties. In Powder metallurgy, InTech., 47-72.
  • [5] Rack A., Helwig H.M., Bütow A., Rueda A., Matijasevic-Lux B.B., Helfen L., Goebbelse J., Banhart J. 2009. Earlypore formation in aluminium foams studied by synchrotron-based microtomography and 3-D image analysis. Acta Materialia, 57: 4809-4821.
  • [6] Mukherjee M., Garcia-Moreno F., Banhart J. 2010. Solidification of metal foams. Acta Materialia, 58: 6358-6370.
  • [7] Duarte I., Banhart J. 2000. A study of aluminium foam formation-kinetics and microstructure. Acta materialia, 48: 2349-2362.
  • [8] Koizumi T., Kido K., Kita K., Mikado K., Gnyloskurenko S., Nakamura T. 2011. Foaming agents of powder metallurgy production of aluminum foam. Materials transactions, 52: 728-733.
  • [9] Stöbener K., Baumeister J., Rausch G., Rausch M. 2005. Forming metal foams by simpler methods for cheaper solutions. Metal Powder Report, 60: 12-16.
  • [10] Stöbener K., Lehmhus D., Avalle M., Peroni L., Busse M. 2008. Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing. International Journal of Solids and Structures, 45: 5627-5641.
  • [11] Vesenjak M., Borovinšek M., Fiedler T., Higa Y., Ren Z. 2013. Structural characterisation of advanced pore morphology (APM) foam elements. Materials Letters, 110: 201-203.
  • [12] Vesenjak M., Gačnik F., Krstulović-Opara L., Ren Z. 2011. Behavior of composite advanced pore morphology foam. Journal of Composite Materials, 45: 2823-2831.
  • [13] Ulbin M., Borovinšek M., Higa Y., Shimojima K., Vesenjak M., Ren Z. 2014. Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements. Materials Letters, 136:416-419.
  • [14] Fiedler T., Sulong M.A., Vesenjak M., Higa Y., Belova I.V., Oechsner A., Murch G.E. 2014. Determination of the thermal conductivity of periodic APM foam models. International Journal of Heat and Mass Transfer, 73: 826-833.
  • [15] Vesenjak M., Gačnik F., Krstulović-Opara L., Ren Z. 2015. Mechanical properties of advanced pore morphology foam elements. Mechanics of Advanced Materials and Structures, 22: 359-366.
  • [16] Lehmhus D., Baumeister J., Stutz L., Schneider E., Stöbener K., Avalle M., Peroni L., Peron M. 2010. Mechanical characterization of particulate aluminum foams strain‐rate, density and matrix alloy versus adhesive effects. Advanced Engineering Materials, 12: 596-603.
  • [17] Banhart J. 2001. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 46: 559-632.
  • [18] Marsh K., Bugusu B. 2007. Food packaging roles, materials, and environmental issues. Journal of Food Science, 72 (3): 39-55.
  • [19] Mbadike E.M., Osadebe N.N. 2012. Effect of incorporating expanded polystyrene aggregate granules in concrete matrix. Nigerian Journal of Technology, 31: 401-404.
  • [20] Kuhail Z., Shihada S. 2003. Mechanical properties of polystyrene light weight concrete. Journal of the Islamic University of Gaza, 11: 93-114.
  • [21] Chaukura N., Gwenzi W., Bunhu T., Ruziwa D.T., Pumure I. 2016. Potential uses and valueadded products derived from waste polystyrene in developing countries: A Review. Resources Conservation and Recycling, 107: 157-165.
  • [22] Uzun A., Turker M. 2015. The investigation of mechanical properties of B4C-reinforced AlSi7 foams. International Journal of Materials Research, 106: 970-977.
  • [23] Sulong M.A., Vesenjak M., Belova I.V., Murch G.E., Fiedler T. 2014. Compressive properties of Advanced Pore Morphology (APM) foam elements. Materials Science and Engineering A, 607: 498-504.
  • [24] Jeenager V.K., Pancholi V. 2014. Influence of cell wall microstructure on the energy absorption capability of aluminium foam. Materials and Design, 56: 454-459.
  • [25] Guo C., Zou T., Shi C., Yang X., Zhao N., Liu E., He C. 2015. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers. Materials Science and Engineering A, 645: 1-7.