Conformable Kesirsel Mertebeden Tam Değer Fonksiyonlu Lojistik Modelin Kararlılık ve Çatallanma Analizi

Bu çalışmada, conformable kesirsel mertebeden tam değer fonksiyonlu lojistik model ele alınmıştır. Modele tamdeğer fonksiyonlarının kullanılmasına dayalı bir ayrıklaştırma işlemi uygulanılarak bir fark denklem sistemi eldeedilmiştir. Elde edilen bu fark denklem sisteminin pozitif denge noktasının yerel asimptotik kararlı olmasınısağlayan cebirsel koşullar Schur-Cohn kriterlerinin kullanılmasıyla elde edilmiştir. Yine çatallanma analizi ilesistemde ? parametresinin değişimine bağlı olarak Neimark-Sacker çatallanmasının oluştuğu gösterilmiştir. Ayrıcakesirsel mertebeden türev parametresi ( ? ) ve kesiklileştirme parametresi ( ℎ ) nin sistemin dinamik yapısıüzerindeki etkisi araştırılmıştır. Elde edilen tüm teorik sonuçlar nümerik simülasyonlarla desteklenmiştir.

Stability and Bifurcation Analysis of a Conformable Fractional Order Logistic Model with Piecewise Constant Arguments

In this study, a conformable fractional order logistic model with piecewise constant arguments is considered. A discrete system is obtained by applying a discretization process to the model based on the use of piecewise constant arguments. By using the Schur-Cohn criterion, necessary and sufficient condition is obtained for asymptotic stability of a positive equilibrium point of the discrete system. Moreover, bifurcation analysis shows that NeimarkSacker bifurcation occurs due to the change of parameter r in the system. In addition, effect of fractional order parameter ( ? ) and discretization parameter ( ℎ ) on the dynamic structure of the system are investigated. Finally, all theoretical results are supported by numerical simulations.

___

  • [1] Abbas S., Banerje M., Momani S. 2011. Dynamical Analysis of Fractional-Order Modified Logistic Model. Compu. Math. Appl., 62: 1098-1104.
  • [2] Parra G.G., Arenas A.J., Chen-Charpentier B.M. 2014. A Fractional Order epidemic Model for the Simulation of Outbreaks of Influenza A(H1N1). Math. Method. Appl. Sci., 37: 2218-2226.
  • [3] Khalil R., Al Horani M., Yousef A., Sababheh M. 2014. A new definition of fractional derivative. J. Comput. Appl. Math., 264: 65-70.
  • [4] Abdeljawad T. 2015. On conformable fractional calculus. J. Comput. Appl. Math., 279: 57-66.
  • [5] Perez J.E.S., Gomez-Aguilar J.F., Baleanu D., Tchier F. 2018. Chaotic Attractors with Fractional Conformable Derivatives in the Liouville-Caputo Sense and Its Dynamical Behaviors. Entropy, 20: 384.
  • [6] Balcı E., Öztürk İ., Kartal Ş. 2019. Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos. Soliton. Fract., 123: 43-51.
  • [7] Kartal S., Gurcan F. 2019. Discretization of conformable fractional differential equations by a piecewise constant approximation. Int. J. Comput Math., 96: 1849-1860.
  • [8] Gürcan F., Kaya G., Kartal Ş. 2019. Conformable fractional order Lotka-Volterra predator-prey model: Discretization, stability and bifurcation. J. Comput. Nonlin. Dyn., 14 (11): 111007.
  • [9] Ye H., Ding Y. 2009. Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model. Math. Probl. Eng., 2009: 1-12.
  • [10] Ertürk V.S., Odibat Z.M., Momani S. 2011. An Approximate Solution of a Fractional Order Differential Equation Model of Human T-Cell Iymphotropic Virus I (HTLV-I) Infection of CD4+ T-Cells. Comput. Math. Appl., 62: 996-1002.
  • [11] Zeng C., Yang Q. 2010. A Fractional Order HIV Internal Viral Dynamics Model. Comput. Model. Eng.Sci., 59: 65-77.
  • [12] Özalp N., Demirci E. 2011. A Fractional Order SEIR Model with Vertical Transmission. Math. Comput. Model., 54: 1-6.
  • [13] Pinto C.M.A., Machado J.A.T. 2013. Fractional Model for Malaria Transmission Under Control Strategies. Comput. Math. Appl., 66: 908-916.
  • [14] Ahmed E., Elgazzar A.S. 2007. On Fractional Order Differential Equations Model for Nonlocal Epidemics. Physicia A, 379: 607-614.
  • [15] Rihan F.A. 2013. Numerical Modelling of Fractional-Order Biological Systems, abstr. Appl. Anal., 2013: 1-11.
  • [16] Varalta N., Gomes A.V., Camargo R.F. 2014. A Prelude to the Fractional Calculus Applied to Tumor Dynamics. Tendencias em Matematica Aplicade e Computacional., 15: 211-221.
  • [17] Ahmed E., Hashis A.H., Rihan F.A. 2012. On Fractional Order Cancer Model. J. Fract. calc. Appl., 3: 1-6.
  • [18] Shanbazi M., Erjaee G.H., Erjaee H. 2014. Dynamical Analysis of chemotherapy Optimal Control Using Mathematical Model Presented by Fractional Differential Equations, Describing Efector Immune and Cancer Cells Interactions. Journal of Pharmacy and Pharmaceutical Sciences, 3: 5- 17.
  • [19] Bozkurt F. 2014. Stability Anaysis of a Fractional Order Differential equation System of a GBMIS Interaction Depending on the Density. Appl. Math. Inf. Sci., 8: 1021-1028.
  • [20] Jun D., Jun Z.G., Yong X., Hong Y., Jue W. 2014. Dynamic Behavior Analysis of FractionalOrder Hindmarsh-Rose Neuronal Model. Cong. Neurodyn., 8: 167-175.
  • [21] El-Raheem Z.F., Salman S.M. 2014. On a Discretization Process of Fractional-Order Logistic Differential Equation. J. Egyptian. Math. Soc., 22: 407-412.
  • [22] Arafa A.A.M., Rida S.Z., Khalil M. 2013. The Effect of Anti-Viral drug Treatment of Human Immunodeficiencey Virus Type 1 (HIV-1) Described by a Fractional Order Model. Appl. Math. Model., 37: 2189-2196.
  • [23] Arafa A.A.M., Rida S.Z., Khalil M. 2014. A Fractional-Order Model of HIV Infection with Drug Therapy Effect. J. Egyptian Math. Soc., 22: 538-543.
  • [24] Yan Y., Kou C. 2012. Stability Analysis for a Fractional Differential Model of HIV Infection of CD4+ T-Cells with Time Delay. Math. Comput. Simulat., 82: 1572-1585.
  • [25] Gökdoğan A., Yıldırım A. 2011. Merdan, M., Solving a Fractional Order Model of HIV Infection of CD4+ T-Cells. Math. Cumput. Model., 54: 2182-2138.
  • [26] Matouk A.E. 2009. Stability Conditions, Hyperchaos and Control in a Novel Fractional Order Hyperchaotic System. Phys. Lett. A., 373: 2166-2173.
  • [27] Jafari H., Daftardar-Gejji V. 2006. Solving a System of Nonlinear Fractional Differential equations Using Adomian Decomposition. J. Math. Anal. Appl., 196: 644-651.
  • [28] Odibat Z., Momani S. 2008. Numerical Methods for Nonlinear Partial Differential Equations of Fractional Order. Appl. Math. Modelling., 32 (1): 28-39.
  • [29] Ajou A.E., Odibat Z., Momani S., Alawneh A. 2010. Construction of Analytical solutions to Fractional Differential Equations Using Homotopy Analysis Method. IAENG Int. J. Appl. Math., 40 (2).
  • [30] Ünlü C., Jafari H., Baleanu D. 2013. Revised Variational Iteration Method for Solving systems of Nonlinear fractional Order differential Equations. Bstr. Appl. Anal., 2013: 1-7.
  • [31] Amen I., Novati P. 2017. The Solution of Fractional Order epidemic Model by Implicit Adams Methods. Aplied Mathematical Modelling, 43: 78-84.
  • [32] Ertürk V.S., Momani S. 2008. Solving systems of Fractional Differential Equations Using differential Transform Method. J. Comput. Appl. Math., 215: 142-151.
  • [33] Verhulst P.F. 1838. A note on the law of population growth. Correspondence Mathema- tique et Physique Publee par A. Quetelet, 10: 113-121.
  • [34] Zhou S., Zhang W., He Z. 2009. Generalized projective synchronization of time-delayed fractional order chaotic systems. International Conference on Communications, Circuits and Systems, Milpitas, CA, 853-857.
  • [35] Wang D., Yu J. 2008. Chaos in the fractional order logistic delay system. International Conference on Communications, Circuits and Systems, Fujian, 646-651.
  • [36] El-Saka H.A.A., Ahmed E., Shehata M.I., El-Sayed A.M.A. 2008. On stability, persistence, and Hopf bifurcation in fractional order dynamical systems. Nonlinear Dynamics, 56 (1): 121-126.
  • [37] Elaydi S. 2005. An Introduction to Difference Equations. Springer, 1-539.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü