Çekme Yükü Altında Gömülü Tek Tesirli Yama ile Yapıştırılarak Birleştirilmiş Kompozit Parçaların Gerilme Analizi

Bu çalışmada, çekme yüküne maruz bırakılmış gömülü tek tesirli yama ile yapıştırılarak birleştirilmiş kompozitparçaların üç boyutlu sonlu elemanlar yöntemi kullanılarak gerilme analizleri yapılmıştır. Analizlerde, farklıoryantasyon açılı karbon/epoksi (AS4/3501-6) kullanılarak üretilmiş kompozit parçalar ve DP410 tür yapıştırıcıkullanılmıştır. Nümerik analizler için modeller sonlu elemanlar yöntemine temellendirilmiş ANSYS paketprogramı kullanılarak oluşturulmuştur. Hasar yükleri analizler sonuçlarına göre tespit edilmiştir. Yapıştırıcıüzerinde oluşan von-Mises gerilmesi ve x, y ve z doğrultularında oluşan gerilmeler belirlenen hasar yüklerindeelde edilmiştir. Sonuç olarak, yama boyutlarının, oryantasyon açılarının ve yapıştırıcının etkileri araştırılmıştır.Gömülü yama ile yapıştırılarak birleştirilen kompozit parçaların hasar yükleri üzerinde en etkili parametreninyama boyutları olduğu belirlenmiştir.

Stress Analysis of Composite Parts Adhesively Jointed with the Embedded Single-Lap Patch Joint under Tensile Load

In this paper, composite parts bonded with embedded single-lap patch joint (SLJ) subjected to tensile load were analysed by using three dimensional (3D) finite element method (FEM) based stress analysis. In the analysis, the composite parts were produced using carbon/epoxy (AS4/3501-6) with different fiber orientations and DP410 type were the adhesive used in bonding applications. The models for the numerical analyses were generated in the finite element method based commercial engineering code of ANSYS. Failure loads were determined from the FEA. Stress values at x, y, z directions and the von-Mises stress distributions on adhesive were obtained at the occurrence of the failure for predetermined parameters. Consequently, the effects of orientations, patch dimensions, and adhesive layer were examined. The most effective parameter was determined as the patch dimensions on failure loads of composite parts adhesively bonded with the embedded single-lap patch joint.

___

  • Abdi H., Papadopoulos J., Nayeb-Hashemi H., Vaziri A. 2017. Enhanced elastic-foundation analysis of balanced single lap adhesive joints, International Journal of Adhesion & Adhesives, 72: 80-91.
  • Stein N., Mardani H., Becker W. 2016. An efficient analysis model for functionally graded adhesive single lap joints, International Journal of Adhesion & Adhesives, 70: 117-125.
  • Guin W.E., Wang J. 2016. Theoretical model of adhesively bonded single lap joints with functionally graded adherents, Engineering Structures, 124: 316-332.
  • Moya-Sanz E.M., Ivañez I., Garcia-Castillo S.K. 2017. Effect of the geometry in the strength of single-lap adhesive joints of composite laminates under uniaxial tensile load, International Journal of Adhesion & Adhesives, 72: 23-29.
  • Ribeiro T.E.A., Campilho R.D.S.G., da Silva L.F.M., Goglio L. 2016. Damage analysis of composite–aluminium adhesively-bonded single-lap joints, Composite Structures, 136: 25-33.
  • Engerer J.D., Sancaktar E. 2011. The effects of partial bonding in load carrying capacity of single lap joints, International Journal of Adhesion & Adhesives, 31: 373-379.
  • Tang J.H., Sridhar I., Srikanth N. 2013. Static and fatigue failure analysis of adhesively bonded thick composite single lap joints, Composites Science and Technology, 86: 18-25.
  • Kim K.S., Yi Y.M., Cho G.R., Kim C.G. 2008. Failure prediction and strength improvement of uni-directional composite single lap bonded joints, Composite Structures, 82: 513-520.
  • Katnam K.B., Comer A.J., Stanley W.F., Buggy M., Ellingboe A.R., Young T.M. 2011. Characterising prepreg and non-crimp-fabric composite single lap bonded joints, International Journal of Adhesion & Adhesives, 31: 679-686.
  • Khalili S.M.R., Jafarkarimi M.H., Abdollahi M.A. 2009. Creep analysis of fibre reinforced adhesives in single lap joints—Experimental study, International Journal of Adhesion & Adhesives, 29: 656-661.
  • Ariaee S., Tutunchi A., Kianvash A., Entezami A.A. 2014. Modeling and optimization of mechanical behavior of bonded composite–steel single lap joints by response surface methodology, International Journal of Adhesion & Adhesives, 54: 30-39.
  • Reis P.N.B., Antunes F.J.V., Ferreira J.A.M. 2005. Influence of superposition length on mechanical resistance of single-lap adhesive joints, Composite Structures, 67: 125-133.
  • Salih A., Aydin M.D. 2014. 3-D non-linear stress analysis on the adhesively bonded composite joint under bending moment, International Journal of Mechanical Sciences, 81: 149-157.
  • Daniel I.M., Abot J.L. 2000. Fabrication testing and analysis of composite sandwich beams, Composites Science and Technology, 60: 2455-2463.
  • Camponeschi E.T. 1990. Compression Response of Thick-Section Composite Materials, ReportDTRC-SME-90/60, David Taylor Research Center, Annapolis, USA.
  • Sülü İ.Y., Temiz Ş., Aydin M.D. 2015. Layer effects of multi-layered face to face adhesively bonded composite pipes subjected to internal pressure, Academic Journal of Science, 4 (3): 195- 202.
  • Sulu I.Y., Temiz S. 2018. Failure and stress analysis of internal pressurized composite pipes joined with sleeves, J. Adhesion Science and Technology, 32 (8): 816-832.
  • Ozel A., Yazici B., Akpinar S., Aydin M.D., Temiz Ş. 2014. A study on the strength of adhesively bonded joints with different adherends, Composites Part B: Engineering, 62: 167-174.
  • Temiz S. 2006. Application of bi-adhesive in double-strap joints subjected to bending moment, J. Adhesion Science and Technology, 20: 1547-1560.