Benzoat esteri içeren kumarin yapılı bileşiğin deneysel ve kuantum kimyasal hesaplamarı

Çalışmanın amacı 4-Kumarinil-4-florobenzoatı sentezleyerek deneysel ve teorik özelliklerini tespit etmekti. 4- Kumarinil-4-florobenzoat, aroil bileşiklerinin nükleofilik katılma-ayırma reaksiyonu kullanılarak sentezlendi. Bu bağlamda 4-kumarinil 4-florobenzoat bileşiği, kuantum kimyasal hesaplamalar ve spektral teknikler kullanılarak hem deneysel hem de teorik olarak karakterize edilmiştir. Bileşiğin temel halde 1H ve 13C’ün nükleer manyetik rezonansları ve infrared spektroskopik değerleri hem deneysel olarak hem de teorik olarak hesaplandı (teorik hesaplamalar yapılırken yoğunluk fonksiyonel teorisi metodu kullanıldı). Hesaplanan infrared ve nükleer manyetik rezonan değerlerinin deneysel değerler ile uyumlu olduğu görüldü. Bileşiğin moleküler geometrisi, geometrik yapısı ve geometrik parametreler gibi kuantum kimyasal hesaplamarı 6-311G(d,p) temel seti ile hesaplandı. HOMO-LUMO arasındaki enerji farkı, kimyasal sertlik ve kimyasal yumuşaklık gibi elektronik özelliklerin kuantum kimyasal hesaplamarı yapıldı. 4-Kumarinil-4-florobenzoat‘ın moleküler elektrostatik potansiyel (MEP) yüzeyi elde edildi.Anahtar kelimeler: DFT, kumarin, HOM-LUMO, moleküler modelleme.

Experimental and quantum chemical calculations of coumarin-structured compound containing Benzoate ester

The aim of the study was to synthesize 4-Coumarinyl-4-fluorobenzoate and detect its experimental and theoretical properties. 4-Coumarinyl-4-fluorobenzoate was synthesized using by the nucleophilic adduction-separation reaction of aroyl compounds. In this context 4-coumarinyl 4-fluorobenzoate compound has been characterized both experimentally and theoretically by using quantum chemical calculations and spectral techniques. Nuclear magnetic resonances and infrared spectroscopic values of 1H and 13C in the basic state of the title compound were calculated both experimentally and theoretically (Density functional theory method was used while making theoretical calculations). It was seen that the calculated infrared and nuclear magnetic resonance values were compatible with the experimental values. Quantum chemical calculations such as the molecular geometry, geometric structure, and geometric parameters of the title compound were calculated with the 6-311G (d, p) basis set. Quantum chemical calculations of electronic properties such as energy difference between HOMO-LUMO, chemical hardness and chemical softness were made. Molecular electrostatic potential (MEP) surface of 4- Coumarinyl-4-fluorobenzoate was obtained.Keywords: DFT, coumarin, HOMO-LUMO, molecular modeling.

___

  • [1] Bouasla S., Amaro-Gahete J., Esquivel D., López M.I., Jiménez-Sanchidrián C., Teguiche M., Romero-Salguero F. 2017. Coumarin derivatives solvent-free synthesis under microwave irradiation over heterogeneous solid catalysts. Molecules, 22 (12): 2072-2080.
  • [2] Kolancılar H. 2019. DFT Yöntemi Kullanılarak 1, 3-Bis-{(2-Aminobenzoil) Amino} Propanın Teorik Hesaplamaları ve Bu Değerlerin Literatürdeki Deneysel Değerler ile Karşılaştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7 (3): 1319-1334.
  • [3] Abdel M.S.A., Hamed E., Saif M., Hafez S. 2018. Binding, and thermodynamics of βcyclodextrin inclusion complexes with some coumarin laser dyes and coumarin-based enzyme substrates: a simulation study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 92 (3): 319-327.
  • [4] Yu T., Zhu Z., Bao Y., Zhao Y., Liu X., Zhang, H. 2017. Investigation of novel carbazolefunctionalized coumarin derivatives as organic luminescent materials. Dyes and Pigments, 147 (1): 260-269.
  • [5] Babinski D., Soltani O., Frantz D.E. 2008. Stereoselective synthesis of acetoacetate-derived enol triflates. Organic Letters, 10 (13): 2901-2904.
  • [6] Frisch M.J.E.A., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Nakatsuji H. 2009. gaussian 09, Revision d. 01, Gaussian. Inc., Wallingford CT, 201.
  • [7] Becke A.D. 1993. Density-Functional Exchange-Energy Approximation With Correctasymptotic Behavior. Phys Rev A Gen Phys. 98: 3098-3100.
  • [8] Becke A.D. 1993. A new Mixing of Hartree-Fock and Local Density-Functional Theories. Chem. Phys., 98: 372-1377.
  • [9] Govindarajan S., Nagabalasubramanian P.B. 2015. Molecular structure and spectroscopic properties of 4-methoxybenzaldehyde based on density functional theory calculations. J. Adv. Sci. Eng. 2 (2): 75-86
  • [10] Du XH, Hansell C, Doyle E.P, Caffrey C.R, Holler T.P, McKerrow J.H, Cohen F.E.2002. Synthesis and Biochemical Evaluation of Thiochromanone Thiosemicarbazone Analogues as Inhibitors of Cathepsin L. J. Med Chem, 45 (13): 2695-2707.
  • [11] El Oudiani A., Msahli S., Sakli F. 2017. In-depth study of agave fiber structure using Fourier transform infrared spectroscopy. Carbohydrate polymers, 5 (164): 242-248.
  • [12] Edington A., Sean C., Jennifer C., Carlos R. 2016. An Empirical IR Frequency Map for Ester C=O Stretching Vibrations. The Journal of Physical Chemistry, A 120 (22) : 3888-3896.
  • [13] Balcı M. 2008. Organik Kimya Reaksiyon Mekanizmaları. Türkiye Bilimler Akademisi Ders Kitapları, Ankara, 1-125.
  • [14] Hussain J., Angira D., Hans T., Dubey P., Kirubakaran S., Thiruvenkatam V. 2020. Synthesis and characterization of a new class of phenothiazine molecules with 10H-substituted morpholine & piperidine derivatives: a structural insight. Journal of Molecular Structure, 1219 (5): 128546- 12858.
  • [15] O’Boyle N.M., Tenderholt A.L., Langner K.M. 2008. A library for package‐independent computational chemistry algorithms. Journal of computational chemistry, 29 (5): 839-845.
  • [16] Franco P., José L., Gázquez. 2019. Electronegativities of Pauling and Mulliken in Density Functional Theory. The Journal of Physical Chemistry, 123 (46): 10065-10071.
  • [17] Harrison J.A., Schall J.D., Maskey S., Mikulski P.T., Knippenberg M.T., Morrow B.H. 2018. Review of force fields and intermolecular potentials used in atomistic computational materials research. Applied Physics Reviews, 5 (3): 31104-31114.
  • [18] Fedorov D.A., Seritan S., Fales B.S., Martínez, T.J., Levine B.G. 2020. PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics. Journal of Chemical Theory and Computation, 16 (9): 5485-5498.