Tungsten Karbür Besleme Stoğundan Elde Edilen Parçalar İçin İdeal Çözücünün Araştırılması
Bu çalışmada tungsten karbür- kobalt (WC-Co) besleme stoğundan Toz Enjeksiyon Kalıplama (TEK) yöntemi ile elde edilmiş numunelerin kimyasal bağlayıcı aşamasında kullanılacak çözücü türü araştırılmıştır. TEK yöntemi ile WC-Co besleme stoğundan hazırlanan deney numunelerinin kimyasal bağlayıcı giderme deneyleri onüç farklı çözücü (Toluen, Benzen, Heptan, Aseton, Etanol, Karbon tetraklorür (CCl4), Etanol+ Karbon tetraklorür (CCl4), Metanol, Nitrik asit, Hidroklorik asit, Sülfürik asit, Kloroform, Dikloroetan) kullanılarak gerçekleştirilmiştir. Deneyler sonucunda WC-Co besleme stoğu için bulunabilirlik ve maliyet açısından en ideal çözücünün etanol olduğu belirlenmiştir. Ayrıca deneyler sonucunda 60 °C sıcaklık ve 60 saat sürede etanol içerisinde tutulan parçalarda hedeflenen sonuçların elde edildiği belirlenmiştir.
Investigation of The Ideal Solvent For Parts Obtained From Tungsten Carbide Feedstock
In this study, the solvent type used in the chemical debinding process of the samples manufactured from tungsten carbide - cobalt (WC-Co) feedstock by Powder Injection Molding (PIM) method was investigated. Chemical debinding process experiments of the test samples prepared from WC-Co feedstock by PIM method were carried out using thirteen different solvents (Toluene, Benzene, Heptane, Acetone, Ethanol, Carbon tetrachloride (CCl4), Ethanol + Carbon tetrachloride (CCl4), Methanol, Nitric acid, Hydrochloric acid, Sulfuric acid, Chloroform Dichloroethane). As a result of the experiments, ethanol was determined to be the most ideal solvent for WC-Co feedstock in terms of availability and cost. In addition, as a result of the experiments, it was determined that the targeted results were obtained in parts kept in ethanol at 60 °C temperature for 60 hours.
___
- [1] German R.M. 1990. Powder injection molding. Cambridge Univ Press, 1-457.
- [2] Palacı Y. 1994. Kapileri emme mekanizması ile enjeksiyonda kalıplanmış parçadan bağlayıcının alınması, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
- [3] Subaşı M., Safarian A., Karataş Ç. 2019. The investigation of production parameters of Ti-6Al- 4V component by powder injection molding. The International Journal of Advanced Manufacturing Technology, 105:4747–4760.
- [4] Urtekin L, Genç A, Bozkurt F. 2019. Fabrication and simulation of feedstock for titaniumpowder injection-molding cortical-bone screws. Mater Tehnol, 53: 619–25.
- [5] Baojun Z., Xuanhui Q. and Ying T. 2002. Powder injection molding of WC–8% Co tungsten cemented carbide. International Journal of Refractory Metals and Hard Materials, 20(5-6): 389-394.
- [6] Lee W.-J., Lee S.-E. and Kim C.-G. 2006. The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding. Composite Structures, 76(4): 406-410.
- [7] Heng S. Y., Norhamidi M., Sulong A. B., Abdolali F., Sri Y., Amin M. 2013. Effect of sintering temperature on the mechanicaland physical properties of WC–10%Co through micro- powderinjection molding (mPIM), Ceramics International. 39: 4457–4464.
- [8] Li T., Qingfa L., Fuh J.Y.H., Poh C. Y., Lu L. 2009. Two-material powder injection molding of functionally graded WC–Co components, Int. Journal of Refractory Metals & Hard Materials. 27: 95–100.
- [9] Nishimura K. and Yoshino K., 1995. Binder system for use in the injection molding of sinterable powders and molding compound containing the binder system, Google Patents, 1-10.
- [10] Mutsuddy B.C. and Ford R.G. 1994. Ceramic injection molding. Vol. 1. Springer Science& Business Media, 1-152.
- [11] Diaz-Cano A., Trice R.W. and Youngblood J.P. 2017. Stabilization of highly-loaded boron carbide aqueous suspensions, Ceramics International, 43 (12): 8572- 8578.
- [12] Okumura K.-i., Chono K., Ozeki H. and Hamada T. 1991. Reaction injection molding method. Google Patents, 1-10.
- [13] Chen A.T., Farrissey W.J.J. and Robert G.N.I. 1978. Polyester amides suitable for injection molding. Google Patents, 1-10.
- [14] Fukushima M. and Iwanami T. 1975. Molding material. Google Patents, 1-10.
- [15] Imai T., Hashimoto M. and Harima S. 2001. Polypropylene resin composition and injection-molded article thereof. Google Patents, 1-10.
- [16] Qu X., Gao J., Qin M. and Lei C. 2005. Application of a wax-based binder in PIM of WC–TiC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 23 (4-6): 273-277.
- [17] Enneti R.K., Prough K.C., Wolfe T.A., Klein A., Studley N. and Trasorras J.L. 2018. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology. International Journal of Refractory Metals and Hard Materials, 71: 28-35.