A Study on Changes in Some Physicochemical Properties, Volatile Compounds, Sugar, and Organic Acid Contents of Grape Juice During Molasses Production

A Study on Changes in Some Physicochemical Properties, Volatile Compounds, Sugar, and Organic Acid Contents of Grape Juice During Molasses Production

The changes in some physicochemical properties, sugar, organic acid and volatile compound contents in fresh Verdani grape (Vitis vinifera L.) juice (FGJ) were evaluated in the production of its traditional molasses (pekmez). After the production, the total soluble solid (TSS), titratable acidity (TA), glucose, fructose, malic, citric and succinic acid concentrations were increased (P<0.05) with rising the concentration. However, the level of glucose and fructose in TSS decreased by 4.67% and by 11.78%, respectively (P<0.05), based on their degradation. Similarly, the rates of tartaric and malic acids, as the major organic acids, in the TSS were decreased by 73.91% and by 67.25%, respectively. These reductions raised the pH value of molasses (P<0.05). In addition, the majority of volatile compounds in FGJ disappeared after the production of molasses, whereas some volatile furans were formed in significant amounts. This study revealed that most of both the taste and the flavor components in grapes are changed qualitatively and quantitatively during the production of tratiditional molasses

___

  • [1] Food and Agriculture Organization (FAO), “Statistical data, 2020”. [Online]. Available: https://www.fao.org/faostat/en/#data/QCL, [Accessed: Aug. 25, 2022].
  • [2] A. Toker, ve İ. Hayoğlu, “Şanlıurfa Yöresi Gün Pekmezlerinin Üretim Tekniği ve Bazı Fiziksel-Kimyasal Özellikleri,” Harran Üniversitesi Ziraat Fakültesi Dergisi, vol. 8, no. 2, pp. 67-73, 2004
  • [3] Türkiye İstatistik Kurumu (TÜİK), “Bitkisel Üretim İstatistikleri, 2021”. [Online]. Available: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr, [Accessed: Sept. 20, 2022].
  • [4] A. Batu, “Klasik ve Modern Yönteme Göre Sıvı ve Beyaz Katı Üzüm Pekmezi (Zile Pekmezi) Üretimi,” Gıda Teknolojileri Elektronik Dergisi, Vol. 2, pp. 9-26, 2006
  • [5] E. Karababa and N. Develi Isikli, “Pekmez: A Traditional Concentrated Fruit Product,” Food Rev. Int., vol. 21, no. 4, pp. 357-366, 2005
  • [6] M. M. Özcan, Ş. Alpar, and F. AL Juhaimi, “The effect of boiling on qualitative properties of grape juice produced by the traditional method,” J. Food Sci. Technol., vol. 52, no. 9, pp. 5546-5556, 2015
  • [7] Y. Soyer, N. Koca, and F. Karadeniz, “Organic acid profile of Turkish white grapes and grape juices,” J. Food Compos. Anal., vol. 16, no. 5, pp. 629–636, 2003
  • [8] S. Helvacıoğlu, M. Charehsaz, E. Güzelmeriç, E. Türköz Acar, E. Yeşilada and A. Aydın, “Comparatively Investigation of Grape Molasses Produced by Conventional and Industrial Techniques,” Marmara Pharm. J., vol. 22, no. 1, pp. 44–51, 2018
  • [9] N, Kaplan, “Diyarbakır ve Mardin İllerinde Yetiştirilen Üzüm Çeşitlerinin Ampelografik Özelliklerinin Saptanması Üzerine Bir Araştırma,” Doktora tezi, Fen Bil. Ens., Ankara Ünv., Ankara, TR, 1994
  • [10] T. Cihat; SUNA, “Physical and chemical properties of pekmez (molasses) produced with different grape cultivars,” Tarım Bilim. Derg., vol. 22, no. 3, pp. 339-348, 2016
  • [11] C. Türkben ve V. Uylaşer, “Türkiye’de Farklı Lokasyonlarda Üretilen Pekmezin (Üzüm Pekmezi) Fiziksel ve Kimyasal Özellikleri,” Türkiye 9. Bağcılık ve Teknolojileri Sempozyumu Bahçe, Vol 47, no 1 (Özel Sayı), pp. 131-139, 2018
  • [12] A. Şimşek, N. Artık, and E. Baspinar, “Detection of raisin concentrate (Pekmez) adulteration by regression analysis method,” J. Food Compos. Anal., vol. 17, no. 2, pp. 155-163, 2004
  • [13] H. Yoğurtçu and F. Kamışlı, “Determination of rheological properties of some pekmez samples in Turkey,” J. Food Eng., vol. 77, no. 4, pp. 1064-1068, 2006
  • [14] S. Karaman and A. Kayacier, “Effect of temperature on rheological characteristics of molasses: Modeling of apparent viscosity using Adaptive Neuro – Fuzzy Inference System (ANFIS),” LWT., vol. 44, no. 8, pp. 1717–1725, 2011
  • [15] I. Tosun and N. S. Ustun, “Nonenzymic browning during storage of white hard grape pekmez (Zile pekmezi),” Food Chem., vol. 80, no. 4, pp. 441-443, 2003, doi: 10.1016/S0308-8146(02)00196-6.
  • [16] O. S. Toker, M. Dogan, N. B. Ersöz, and M. T. Yilmaz, “Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels,” Ind. Crops Prod., vol. 50, pp. 137–144, 2013
  • [17] S. Kamiloglu and E. Capanoglu, “In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties,” Int. J. Food Sci. Technol., vol. 49, no. 4, pp. 1027–1039, 2014
  • [18] Tükiye Cumhuriyeti Resmi Gazete, Türk Gıda Kodeksi Üzüm Pekmezi Tebliği, Tebliğ No: 2017/8, Available: https://www.resmigazete.gov.tr/eskiler/2017/06/20170930-24.htm
  • [19] AOAC Int. (2000). Official methods of analysis. 17th ed. AOAC Int., Arlington, VA. In Association of Official Analytical Chemists, Rockville, MD, USA.
  • [20] E. Nicolosi, F. Ferlito, M. Amenta, T. Russo, and P. Rapisarda, “Changes in the quality and antioxidant components of minimally processed table grapes during storage,” Sci. Hortic. (Amsterdam)., vol. 232, pp. 175-183, 2018.
  • [21] Harmonised Methods of the International Honey Commission (IHC). “Bee Product Science, 2002”, Available: https://www.ihc-platform.net/ihcmethods2009.pdf, [Accessed: Oct. 11, 2022]
  • [22] M. D. S. Lima et al., “Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil,” Food Chem., vol. 161, pp. 94-103, 2014
  • [23] A. Korkmaz, A. F. Atasoy, and A. A. Hayaloglu, “Changes in volatile compounds, sugars and organic acids of different spices of peppers (Capsicum annuum L.) during storage,” Food Chem., vol. 311, p. 125910, 2020
  • [24] M. J. R. da Silva et al., “Grape juices produced from new hybrid varieties grown on Brazilian rootstocks – Bioactive compounds, organic acids and antioxidant capacity,” Food Chem., vol. 289, pp. 714-722, 2019
  • [25] Dölek, T., “Siirt Yöresinde Yetiştirilen Bazı Üzüm Çeşitlerinin Göz Verimliliklerinin Belirlenmesi Ve Farklı Göz Şarjı Uygulamalarının Verim Ve Kaliteye Etkisi”, Yüksek Lisans Tezi, Fen Bil. Enst. Siirt Ünv., Siirt, Türkiye, 2017
  • [26] D. Granato, M. de Magalhães Carrapeiro, V. Fogliano, and S. M. van Ruth, “Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: A review,” Trends Food Sci. Technol., vol. 52, pp. 31-48, 2016
  • [27] H. Darvishi, M. Koushesh Saba, N. Behroozi-Khazaei, and H. Nourbakhsh, “Improving quality and quantity attributes of grape juice concentrate (molasses) using ohmic heating,” J. Food Sci. Technol., vol. 57, no. 4, pp. 1362–1370, Apr. 2020, doi: 10.1007/s13197-019-04170-1.
  • [28] C. Türkben, S. Suna, G. İzli, V. Uylaşer, and C. Demir, “Physical and chemical properties of Pekmez (Molasses) produced with different grape cultivars,” Tarim Bilim. Derg., vol. 22, no. 3, pp. 339-348, 2016
  • [29] P. Muñoz-Robredo, P. Robledo, D. Manríquez, R. Molina, and B. G. Defilippi, “Characterization of sugars and organic acids in commercial varieties of table grapes,” Chil. J. Agric. Res., vol. 71, no. 3, pp. 452-458, 2011
  • [30] C. Aubert and G. Chalot, “Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.),” Food Chem., vol. 240, pp. 524-533, 2018
  • [31] E. H. Ajandouz, L. S. Tchiakpe, F. D. Ore, A. Benajiba, and A. Puigserver, “Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems,” J. Food Sci., vol. 66, no. 7, pp. 926-931, 2001
  • [32] A. Kuşçu and Ö. Bulantekin, “The effects of production methods and storage on the chemical constituents of apple pekmez,” J. Food Sci. Technol., vol. 53, no. 7, pp. 3083-3092, 2016
  • [33] S. Marín-San Román, P. Rubio-Bretón, E. P. Pérez-Álvarez, and T. Garde-Cerdán, “Advancement in analytical techniques for the extraction of grape and wine volatile compounds,” Food Res. Int., vol. 137, p. 109712, 2020
  • [34] E. Sánchez-Palomo, M. C. Díaz-Maroto, and M. S. Pérez-Coello, “Rapid determination of volatile compounds in grapes by HS-SPME coupled with GC-MS,” Talanta, vol. 66, no. 5, pp. 1152-1157, 2005
  • [35] Y. Wu et al., “Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca × V. vinifera),” Food Chem., vol. 309, p. 125778, 2020
  • [36] M. Cissé et al., “Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality,” Innov. Food Sci. Emerg. Technol., vol. 12, no. 3, pp. 352–360, 2011
  • [37] K. Samborska, R. Bonikowski, D. Kalemba, A. Barańska, A. Jedlińska, and A. Edris, “Volatile aroma compounds of sugarcane molasses as affected by spray drying at low and high temperature,” LWT, vol., 145, p 111288, 2021
  • [38] A. C. T. Biasoto, K. de L. Sampaio, E. J. N. Marques, and M. A. A. P. da Silva, “Dynamics of the loss and emergence of volatile compounds during the concentration of cashew apple juice (Anacardium occidentale L.) and the impact on juice sensory quality,” Food Res. Int., vol. 69, pp. 224-234, 2015