Comparison Of Anomalous Higgs Couplings at the Large Hadron Collider and at Proton-Proton Collider with 100 TeV Energy

Comparison Of Anomalous Higgs Couplings at the Large Hadron Collider and at Proton-Proton Collider with 100 TeV Energy

Gammap and gammagamma ,called photon induced processes, have been examined in various colliders like Large Hadron Collider (LHC) and proton-proton collider with 100 TeV energy. One of the importance of these processes is that they allow for probing the anomalous Higgs couplings. The anomalous Higgs couplings constitute a testing ground for electroweak symmetry breaking (EWSB) mechanism and mass production system. For measuring anomalous Hgammagamma and HZgamma couplings at the LHC and at proton-proton collider with 100 TeV energy, the potential of the pp pgammap pHqX have been examined. Sensitivity bounds on anomalous Higgs couplings have been obtained at %95 confidence level. The analyses have been done for various integrated luminosities and for different scenarios Then the results of them have been compared. Model-independent effective Lagrangian technique have been used and the Higgs boson couplings to gauge bosons have been examined by dimension-six operators.

___

  • [1] G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, no. 1, pp. 1–29, 2012
  • [2] S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B, vol. 716, no. 1, pp. 30–61, 2012.
  • [3] N. Arkani-Hamed, T. Han, M. Mangano, and L.-T. Wang, “Physics opportunities of a 100 TeV proton–proton collider,” Phys. Rep., vol. 652, pp. 1–49, 2016.
  • [4] M.L. Mangano, G. Zanderighi, J.A Aguilar Saavedra, S. Alekhin, S. Badger, C.W. Bauer, T. Becher, V. Bertone , S. Bonvini Boselli , E. Bothmann , et al. ’’ Physics at the FCC-hh, a 100 TeV pp collider, ’’ Cern Yellow Report., vol. 3, pp.1-254, Oct 2017.
  • [5] R. Contino, D. Curtin, A. Katz , M.L. Mangano, G. Panico , M.J Ramsey-Musolf , G. Zanderighi, C. Anastasiou , W. Astill , G. Bambhaniya , et al. “Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies,” Cern Yellow Report., vol. 3,pp. 255-440, Jun 2016.
  • [6] V. Khachatryan et al., “Constraints on the spin-parity and anomalousHVVcouplings of the Higgs boson in proton collisions at 7 and 8 TeV,” Phys. Rev., vol. 92, no. 1, 2015.
  • [7] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, “Constraining anomalous Higgs boson interactions,” Phys. Rev., vol. 86, no. 7, 2012.
  • [8] T. Corbett, O. J. P. Éboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia, “Robust determination of the Higgs couplings: Power to the data,” Phys. Rev., vol. 87, no. 1, 2013.
  • [9] E. Massó and V. Sanz, “Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC,” Phys. Rev., vol. 87, no. 3, 2013.
  • [10] S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya, “Higher dimensional operators and LHC Higgs data : the role of modified kinematics” Phys. Rev. D., vol.89, pp.1-5,March 2014.
  • [11] S. Taheri Monfared, S. Fayazbakhsh, and M. Mohammadi Najafabadi, “Exploring anomalous HZγ couplings in γ-proton collisions at the LHC,” Phys. Lett. B, vol. 762, pp. 301–308, 2016.
  • [12] F. P. An et al., “New measurement of antineutrino oscillation with the full detector configuration at Daya Bay,” Phys. Rev. Lett., vol. 115, no. 11, p. 111802, 2015.
  • [13] A. J. Barr, M. J. Dolan, C. Englert, D. E. F. de Lima, and M. Spannowsky, “Higgs self-coupling measurements at a 100 TeV hadron collider,” J. High Energy Phys., vol. 2015, no. 2, 2015.
  • [14] C. Degrande, V. V. Khoze, and O. Mattelaer, “Multi-Higgs-boson production in gluon fusion at 100 TeV,” Phys. Rev. D., vol. 94, no. 8, 2016.
  • [15] B. Fuks, J. H. Kim, and S. J. Lee, “Probing Higgs boson self-interactions in proton-proton collisions at a center-of-mass energy of 100 TeV,” Phys. Rev. D., vol. 93, no. 3, 2016.
  • [16] J. Baglio, A. Djouadi, and J. Quevillon, “Prospects for Higgs physics at energies up to 100 TeV,” Rep. Prog. Phys., vol. 79, no. 11, p. 116201, 2016.
  • [17] A. Papaefstathiou and K. Sakurai, “Triple Higgs boson production at a 100 TeV proton-proton collider,” J. High Energy Phys., vol. 2016, no. 2, 2016.
  • [18] A. Abada et al., “FCC-hh: The hadron collider: Future circular collider conceptual design report volume 3,” Eur. Phys. J. Spec. Top., vol. 228, no. 4, pp. 755–1107, 2019.
  • [19] The CMS collaboration et al., “Exclusive γγ → μ + μ − production in proton-proton collisions at $ \sqrt s = 7 $ TeV,” J. High Energy Phys., vol. 2012, no. 1, 2012.
  • [20] The CMS collaboration et al., “Search for exclusive or semi-exclusive γγ production and observation of exclusive and semi-exclusive e+e− production in pp collisions at $ \sqrts=7 $ TeV,” J. High Energy Phys., vol. 2012, no. 11, 2012.
  • [21] The CMS collaboration et al., “Study of exclusive two-photon production of W+W− in pp collisions at $ \sqrts=7 $ TeV and constraints on anomalous quartic gauge couplings,” J. High Energy Phys., vol. 2013, no. 7, 2013.
  • [22] V. Khachatryan et al., “Evidence for exclusive γγ → W + W − production and constraints on anomalous quartic gauge couplings in pp collisions at s = 7 $$ \sqrts=7 $$ and 8 TeV,” J. High Energy Phys., vol. 2016, no. 8, 2016.
  • [23] M. Aaboud et al., “Measurement of exclusiveγγ→W+W−production and search for exclusive Higgs boson production inppcollisions ats=8 TeVusing the ATLAS detector,” Phys. Rev. D., vol. 94, no. 3, 2016.
  • [24] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, “The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rep., vol. 15, no. 4, pp. 181–282, 1975.
  • [25] G. Baur, “Coherent γγ and γA interactions in very peripheral collisions at relativistic ion colliders,” Phys. Rep., vol. 364, no. 5, pp. 359–450, 2002.
  • [26] K. Piotrzkowski, “Tagging two-photon production at the CERN Large Hadron Collider,” Phys. Rev. D Part. Fields, vol. 63, no. 7, 2001.
  • [27] X. Rouby, “Measurements of photon induced processes in CMS and forward proton detection at the LHC,” Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, Sept.2008. [Online] Available: http://cp3.irmp.ucl.ac.be/~rouby/files/xavier_rouby_final.pdf
  • [28] N. Schul, “Measurements of two-photon interactions at the LHC”, Universite Catholique de Louvain, Ph.D. thesis, Dept. Phys. Universite Catholique de Louvain, Belgique, July 2011 [Online] Available: http://cds.cern.ch/record/1423327/files/TS2011_030_2.pdf
  • [29] W. Buchmüller and D. Wyler, “Effective lagrangian analysis of new interactions and flavour conservation,” Nucl. Phys. B., vol. 268, no. 3–4, pp. 621–653, 1986.
  • [30] C. N. Leung, S. T. Love, and S. Rao, “Low-energy manifestations of a new interactions scale: Operator analysis,” Z. Phys. C - Particles and Fields, vol. 31, no. 3, pp. 433–437, 1986
  • [31] A. De Rújula, M. B. Gavela, P. Hernandez, and E. Massó, “The self-couplings of vector bosons: does LEP-1 obviate LEP-2?,” Nucl. Phys. B., vol. 384, no. 1–2, pp. 3–58, 1992.
  • [32] K. Hagiwara, S. Ishihara, R. Szalapski, and D. Zeppenfeld, “Low energy effects of new interactions in the electroweak boson sector,” Phys. Rev. D Part. Fields, vol. 48, no. 5, pp. 2182–2203, 1993.
  • [33] M. C. Gonzalez-Garcia, “Anomalous Higgs couplings,” Int. J. Mod. Phys. A, vol. 14, no. 20, pp. 3121–3156, 1999.
  • [34] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the standard model. Cambridge, England: Cambridge University Press, 2014.
  • [35] M. Farina, Y. Grossman, and D. J. Robinson, “ProbingCPviolation inh→Zγwith background interference,” Phys. Rev., vol. 92, no. 7, 2015.
  • [36] V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, “The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation,” Phys. Rep, vol.15, pp.181-282, Jan.1975.
  • [37] O. Kepka and C. Royon, “AnomalousWWγcoupling in photon-induced processes using forward detectors at the CERN LHC,” Phys. Rev., vol. 78, no. 7, 2008.
  • [38] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC,” Eur. Phys. J. C Part. Fields, vol. 63, no. 2, pp. 189–285, 2009.
  • [39] A. Belyaev, N. D. Christensen, and A. Pukhov, “CalcHEP 3.4 for collider physics within and beyond the Standard Model,” Comput. Phys. Commun., vol. 184, no. 7, pp. 1729–1769, 2013.
  • [40] G. Akkaya Selçin and İ. Şahin, “Non-standard Higgs couplings in single Higgs boson production at the LHC and future linear collider,” Chin. J. Phys., vol. 55, no. 6, pp. 2305–2317, 2017.