5-((4-brom-2-klorfenoksi)metil)oksazolidin-2-on ve 5-((2-brom-4- klorfenoksi)metil)oksazolidin-2-on bileşiklerinin Sentezi ve Teorik Hesaplamaları

Bu çalışmada 5-((4-brom-2-klorfenoksi)metil)oksazolidin-2-on ve 5-((2-brom-4-klorfenoksi)metil)oksazolidin-2-on bileşikleri sentezlenip teorik spektroskopik özellikleri B3LYP/6-31G (d,p) ve HF/6-31G (d) temel setlerikullanılarak incelenmiştir. Bu amaçla çalışılan bileşiklerin öncelikle DFT, HF yöntemleri ve 6-31G (d,p)/6-31G(d) temel setleri kullanılarak optimizasyonu yapılmıştır. Gaussian G09W paket programı kullanılarak 1H-NMR,13C-NMR kimyasal kayma değerleri hesaplanmıştır. Deneysel ve teorik kimyasal kayma değerleri için regrasyonanalizleri yapılmıştır. Ayrıca moleküllerin bağ uzunlukları, mulliken yükleri, en yüksek dolu moleküler orbitalenerjisi (HOMO) ve en düşük boş moleküler orbital enerjisi (LUMO) değerleri hesaplanmıştır. HOMO ve LUMOenerji değerlerinden yararlanılarak iyonizasyon potansiyeli elektron ilgisi, elektronegatiflik, kimyasal sertlik,kimyasal yumuşaklık gibi parametrelerin hesaplamaları bir tablo halinde sunulmuştur. Hesaplanan teorik verilerile deneysel verilerin uyumlu oldukları görülmüştür.

Synthesis and Theoretical Calculations of 5-((4-bromo-2- chlorophenoxy)methyl)oxazolidin-2-one and 5-((2-bromo-4- chlorophenoxy)methyl)oxazolidin-2-one

In this study, the 5-((4-bromo-2-chlorophenoxy)methyl)oxazolidin-2-one and 5-((2-bromo-4- chlorophenoxy)methyl)oxazolidin-2-one compounds were synthesized and their theoretical spectroscopic properties were examined using B3LYP / 6-31G (d, p) and HF / 6-31G (d) basic sets. For this purpose, the studied compounds were firstly optimized by using DFT, HF methods and 6-31G (d, p)/6-31G (d) basic sets. 1H-NMR and 13C-NMR chemical shift values were calculated by using Gaussian G09W package program. Regression analyzes were performed for experimental and theoretical chemical shift values. In addition, bond lengths mulliken atomic charge values, the highest occupied molecular orbital energy (HOMO) and lowest unoccupied molecular orbital energy (LUMO) values of molecules, were calculated. Calculations of parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness are presented as a table by utilizing HOMO and LUMO energy values. The calculated theoretical data and experimental data were found to be compatible.

___

  • [1] Tikdari A.M., Fozooni S., Hamidian H. 2008. Samarium and Ruthenium (ІІІ) Chloride Catalyzed Synthesis of Unsaturated 2-Phenyl-5(4H)-oxazolone Derivatives under Solvent-free Conditions, Dodecatungstophosphoric Acid. Molecules, 13 (12): 3246-3252.
  • [2] Shang J., Liu S., Lu L., Ma X., He Y., Deng Y. 2012. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. Catalysis Communications, 28: 13-17.
  • [3] Collet M., Ge´nisson Y., Baltas M. 2007. New approach to carbamoyl-polyoxamic acid derivatives through an oxazolidinone synthon. Tetrahedron: Asymmetry, 18: 1320-1329.
  • [4] Berredjem M., Regainia Z., Dewynter G., Montero J. L., Aouf N. 2006. Simple and efficient synthesis of new chiral N,N′-sulfonyl bis-oxazolidin-2-ones. Heteroatom Chemistry, 17: 61-65.
  • [5] Zurenko G.E., Gibson J.K., Shinabarger D.L., Aristoff P.A., Ford C.W., Tarpley W.G. 2001. Oxazolidinones: a new class of antibacterials. Current Opinion in Pharmacology, 1: 470-476.
  • [6] Lee F., Huang T., Chung C. 2003. Method For Producing 5-Aryloxymethyl-2-Oxazolidinones. Patent No.: US 6,562,980 B1.
  • [7] Bratulescu G. 2007. An Excellent Procedure for the Synthesis of Oxazolidin-2-ones. Advanced online publication: Synthesis, 20: 3111-3112.
  • [8] Kamal A., Khanna G.B.R., Krishnaji T., Tekumalla V., Ramu R. 2005. New chemoenzymatic pathway for b-adrenergic blocking agents. Tetrahedron: Asymmetry, 16: 1485-1494.
  • [9] Bredikhin A.A., Bredikhina Z.A., Zakharychev D.V., Pashagin A.V. 2007. Chiral drugs related to guaifenesin: synthesis and phase properties of methocarbamol and mephenoxalone. Tetrahedron: Asymmetry, 18: 1239-1244.
  • [10] Uang Y., Chen I., Wang L., Hsu K. 2001. Determination of mephenoxalone in human plasma sample by high-performance liquid chromatography–fluorescence detection. Journal of Chromatography B, 759: 91-97.
  • [11] Frisch M.J., Trucks H.B., Schlegel G.E., Scuseria M., Robb J.R., Cheeseman G., Scalmani V., Barone B., Mennucci G.A., Petersson H., Nakatsuji M., Caricato X., Li H.P., Hratchian A.F., Izmaylov J., Bloino G., Zheng J.L, Sonnenberg M., Hada M., Ehara K, Toyota R, Fukuda J, Hasegawa M., Ishida T., Nakajima Y., Honda O., Kitao H., Nakai T., Vreven A., Montgomery J., Peralta F., Ogliaro M., Bearpark J.J., Heyd E., Brothers K.N., Kudin V.N., Staroverov R., Kobayashi J., Normand K., Raghavachari A., Rendell J.C., Burant S.S., Iyengar J., Tomasi M., Cossi N., Rega J.M., Millam M. 2009. Gaussian Inc. Wallingford CT.
  • [12] Becke A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38: 3098-3100.
  • [13] Lee C., Yang W., Parr R. 1988. Development of the Colle- Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37: 785-789.
  • [14] Wolinski K., Hinton J. F., Pulay P. 1990. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112: 8251.
  • [15] Lang P.F., Smith B.C. 2016. Single Bond Lengths of Organic Molecules in the Solid State. Global Journal of Science Frontier Research, XVI (II).
  • [16] Yüksek H., Aytemiz F., Medetalibeyoğlu H., Bahçeci Ş. 2016. DFT/B3LYP ve HF Metodları Kullanılarak 4,5-Dihidro-1H-1,2,4-triazol-5-on Türevlerinin Teorik Özelliklerinin İncelenmesi. Nevşehir Bilim ve Teknoloji Dergisi, 5 (2): 46-64.
  • [17] Boopathi M., Udhayakala P., Ramkumaar G.R. 2016. Vibrational spectroscopic (FT-IR, FTRaman), NMR and electronic structure calculations of metaxalone. Der Pharma Chemica, 8 (7): 161-172
  • [18] Savithiri S., Arockia Doss M., Rajarajan G., Thanikachalam V., Bharanidharan S., Saleem H. 2014. Spectroscopic (FT-IR, FT-Raman) and quantum mechanical studies of 3t-pentyl-2r,6cdiphenylpiperidin-4-one thiosemicarbazone. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy B, 782-792.
  • [19] Palafox M.A. 2000. Scaling Factors for the Prediction of Vibrational Spectra I. Benzene Molecule. International Journal of Quantum Chemistry, 77: 661-684.
  • [20] Hohenberg P., Kohn W. 1964. The Inhomogeneous Electron Gas. Physical Review B, 136: 864- 871.