Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)’nın hassas ve tarla popülasyonlarında enzim aktivitelerinin belirlenmesi ile insektisitlere dayanıklılık arasındaki ilişki

Bu çalışma, pamuğun önemli zararlılarından biri olan Helicoverpa armigera (Hübner)'nın İsrail (hassas)'den getirtilen ve Adana, Hatay ve Antalya illerindeki pamuk ekim alanlarından toplanan popülasyonlarda genel esteraz, glutatyon S-transferaz ve asetilkolinesteraz enzim aktivitelerini ve enzim aktiviteleri ile dayanıklılık arasındaki ilişkileri belirlemek amacıyla ele alınmıştır. H. armigera popülasyonlarının genel esteraz, glutatyon S-transferaz (GST) ve asetilkolinesteraz (AChE) enzim aktiviteleri ölçülmüştür. Genel esteraz enzim aktivitesi Adana, Hatay ve Antalya popülasyonlarında hassasa göre sırasıyla 0.65, 0.80 ve 1.14 kat olarak belirlenmiştir. Tarla popülasyonlarının genel esteraz enzim aktiviteleri hassas popülasyona göre Adana ve Hatay popülasyonlarında daha düşük bulunmasına rağmen, Antalya popülasyonunda benzer bulunmuştur.  GST enzim aktivitesi Adana, Hatay ve Antalya popülasyonlarında sırasıyla 0.75, 0.92 ve 1.06 kat, AChE enzim aktivitesi ise Adana Hatay ve Antalya popülasyonlarında sırasıyla 0.43, 0.60 ve 0.80 kat olarak belirlenmiştir. Genel esteraz enzim aktivitesi GST ve AChE enzim aktivitesi açısından tarla popülasyonları ile hassas popülasyon arasındaki farklılık istatistiksel olarak önemli bulunmamıştır. Belirlenen enzim aktiviteleri ve insektisitlere dayanıklılık arasında bir ilişkinin olup olmadığı, aynı popülasyonlarda daha önce belirlenen dayanıklılık oranları ile karşılaştırılmıştır.

Determination of enzyme activities of susceptible and field populations of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) and its relationship with insecticide resistance

The purpose of this study was to determine the activities of general esterase, glutathione S-transferase (GST), and acetylcholinesterase (AChE) enzymes of Helicoverpa armigera (Hubner) strains, one of the most important pests of cotton, collected from cotton fields in Adana, Hatay, Antalya and susceptible strain (Israel), and to determine their relationship with insecticide resistance. The activities of general esterase, glutathione S-transferase enzyme (GST) and acetylcholinesterase (AChE) enzymes were determined in Helicoverpa armigera strains.  The activities of general esterase enzyme in Adana, Hatay and Antalya populations were determined 0.65, 0.8 ve 1.14 fold, respectively. Adana and Hatay strains had lower general esterase enzyme activities than that of susceptible strain. However, general esterase enzyme activity in Antalya strain was found to be similar to susceptible strain. GST enzyme activities in Adana, Hatay and Antalya populations were determined 0.75, 0.92 ve 1.06 fold, and AChE enzyme activities were 0.43, 0.60 and 0.80 fold, respectively.  GST and AChE enzyme activities of field strains and susceptible strain were found to be similar. Enzymes activities and insecticide resistance had been compared with the resistance ratios of at the same populations, to determine the relationship between enzyme activities and insecticide resistance in H. armigera.

___

  • Ahmad M. and McCaffery A. R. 1988. Resistance to insecticides in a Thailand strain of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae). Journal of Economic Entomology, 81 (1), 45-48.
  • Ahmad M., Iqbal Arif M. and Ahmad Z. 1995. Monitoring insecticide resistance of Helicoverpa armigera (Lepidoptera : Noctuidae) in Pakistan. Journal of Economic Entomology, 88 (4), 771-776.
  • Bin X. 1994. The preliminary biochemivcal analyses of resistance of the cotton bollworm in China. Resistant Pest Management, 6 (2), 4-5.
  • Bradford M. M. 1976. A rapid and sensitive Method for the Quantitation of microgram quantities of protein utilazing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Callaghan A. 1991. Insecticide resistance: mechanism and detection methods. Scientific. Progress Edinburhg, 75, 423-438.
  • Clark A. G. 1990. The glutathione S-transferases and resistance to insecticides. In Glutathione S-transferases and Drug Resistance (Edited by Hayes, J. D., Pickett C. B. and Mantle, T. J.); 369-378.
  • Daly J. C. 1988. Insecticide resistance in Heliothis armigera in Australia. Pesticide Science, 23, 165-176.
  • Ellman G. L. Courtney K. D., Andres V., Jr. and Featherstone R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.
  • Elzen G. W., Leonard B. R., Graves J. B., Burris E. and Micinski S. 1992. Resistance to pyretroid, carbamate, and organophosphate insecticides in field populations of Tobacco budworm (Lepidoptera: Noctuidae) in 1990. Journal of Economic Entomology, 85 (6), 2064-2072.
  • Forgash A. J. 1984. History, evoluation and consequences of insecticide resistance. Pesticide Biochemistry and Physiology, 22, 178-186.
  • Fournier D., Bride J. M., Mouches C., Raymond M., Magnin M., Berge J. B., Pasteur N. ang Georghiou G. P. 1987. Biochemical characterization of esterases A1 and B1 associated with organophosphate resistance in the Culex pipiens L. complex. Pesticide Biochemistry and Physiology, 27, 211-217.
  • Fournier D., Bride J. M., Poirie M., Berge J. B. and Plapp F. W. 1992. Insect Glutathione S- Transferases. The Journal of Biological Chemistry, 267(3), 1840-1845.
  • Fukami J. 1980. The metabolism of several insecticides by glutathione S-transferases. Pharmacology and Therurapeutics, 10, 473-514.
  • Hama H. 1983. Resistance to insecticides due to reduced sensitivity of acetylcholinesterase. “ in Pest resistance to pesticides. Eds: G.P. Georghiou and T. Satio. Plenum Press, New York and London, p. 299-331.
  • Hassall K. A. 1990. The biochemistry and uses of pesticides. Second Eddition. VCH, New York.
  • Knight A.L and Norton G.W. 1990. Economics of agricultural pesticide resistance in arthropods. Annual Review of Entomology, 34, 293-313.
  • Luttrel R. G., Roush R. T. , Ali A., Mink J. S., Reid, M. R. and Snodgrass G. L. 1987. Pyretroid resistance in field populations of Heliothis virescens (Lepidoptera: Noctuidae) in Mississippi in 1986. Journal of Economic Entomology, 80 (5); 985- 989.
  • Martin T., Chandre F., Ochou O. G., Vaissayre M. and Fournier D. 2002. Pyrethroid resistance mechanisms in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Pesticide Biochemistry and Physiology, 74 (1), 17-26.
  • Motoyama N. and Dauterman W. C. 1980. Glutathione S- Transferases: Their role in the metabolism of organophosphorus insecticides. Review of Biochemical Toxicology, 2, 49-69.
  • Motoyama N. and Dauterman W. C. and Plapp F. W. Jr. 1977. Genetic studies of glutathione-dependent reactions in resistant strains of house fly, Musca domestica L. Pesticide Biochemistry and Phsiology, 7, 433.
  • Motoyama N., Rock G. C. and Dauterman W. C. 1971. Studies on the mechanism of azinphosmethyl resistance in the predaceaus mite, Neoseiulus fallacis (T.) (family: Phytoseiidae). Pesticide Biochemistry and Phsiology, 1, 205-215.
  • Omer S. A. H., Konate G., Traore O. Traore O. and Menozzi P. 2009. Biochemical charecterization of the Cotton Bollworm resistance to pyrethroids in Burkina Faso. Pakistan Journal of Biological Sciences, 12 (13), 964-969.
  • Oppenoorth F. J. 1985. Biochemistry and genetics of insecticide resistance. In: Compherensive Insect Physiology, Biochemistry and Pharmacology. (eds. Kerkut, G.S. and Gilbert, L.I.). Vol. 12, Pergamon Press, Oxford, p. 731-773.
  • Oppenoorth F. J., Rupes S. El Bashir S. Houx N. W. H., Voerman S. 1972. Glutathione- dependent degradation of parathion and its significance for resistance in the house fly. Pesticide Biochemistry and Phsiology, Vol. 2; 262-269.
  • Oppenoorth F. J., Smissaert H. R., Welling W., van der Pas L. J. T. and Hitman K. T. 1977. Insentitive acetylcholinesterase, high glutathione S-transferase, and hydrolytic activity as resistance factors in a tetrachlorvinphos-resistant strain of housefly. Pesticide Biochemistry and Phsiology, 7, 34-47.
  • Ottea J. A. and Plapp F. W. 1984. Glutathione S-transferase in the housefly:Biochemical and genetic changes associated with induction and insecticide resistance. Pesticide Biochemistry and Phsiology, 22, 203-208.
  • Plapp F. W. 1984. The genetic basis of insecticide resistance in the houssefly. Evidencethat a single locus plays a major role in metabolic resistance to insecticides. Pesticide Biochemistry and Phsiology,22,194-201.
  • Reidy G. F., Rose H. A. Visetson S. and Murray M. 1990. Increased glutathione S- transferase activity and glutathione content in an insecticide resistant strain of Tribolium castaneum (Herbst). Pesticide Biochemistry and Phsiology, 36, 269-276.
  • Siegfried B.D. and Scott J.G. 1992. Biochemical characterization of hydrolitic and oxidative enzymes in insecticide resistant and susceptible strains of the German cockroach (dictyoptera: Blattellidae). Journal of Economic Entomology, 85(4), 1092-1098.
  • Soderlund D. M. 1997. Molecular mechanisms of insecticide resitance. In: Molecular Mechanisms of Resistance to Agrochemicals (ed. Sjit, V.). Springer, 21-56, Germany.
  • Tang F., Yue Y. and Hua R. 2000. The relationships among MFO, glutathione S- transferases and phoxim resistance in Helicoverpa armigera. Pesticide Biochemistry and Physiology, 68, 96-101.
  • Van Asperen K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology, 8; 401-416.
  • Ugurlu S. and Gürkan M. O. 2007. Insecticide resistance in Helicoverpa armigera from cotton growing areas in Turkey. Phytoparasitica, 35 (4), 376-379.
  • Yidong W. and Jinliang S. 1996. Characters of fenvalerate resistance in Helicoverpa armigera (Hubner) from China. Resistant Pest Management.Vol. 8, No. 1.
  • Yu S. J. 1991. Insecticide resistance in the Fall armyworm, Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology, 39, 84-91.