Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) popülasyonlarında nikotinik asetilkolin reseptör genlerinin karşılaştırılması

Nikotinik asetilkolin reseptörleri (nAChRs) böcek sinir sisteminde hızlı kolinerjik sinaptik taşınmada görevlidirler. Neonikotinoid grubu insektisitler de bu reseptörleri hedef alarak böceklerin ölmesine neden olurlar. Bu çalışmada, Doğu Akdeniz Bölgesi’nden toplanan bazı Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) popülasyonlarında nAChR α1, α3 ve α4 genleri karşılaştırılarak filogenetik ilişkiler ortaya konulmuştur. Denemede Karataş-Gossypium hirsutum (Adana), Aydıncık-Solanum lycopersicum, Erdemli-S. lycopersicum, Samandağ-Cucumis sativus (Hatay) ve Kumluca-Capsicum annum (Antalya)’dan toplanan beş örnekle çalışmalar yürütülmüştür. nAChR α1, 3 ve 4 genleri tüm popülasyonlar için karşılaştırıldığında α1 genleri arasında bir farklılık belirlenmezken; α3 geninde referans gene (full α3) göre tüm popülasyonlarda V147I, A227T ve T534I aminoasitlerinde ve α4 geninde Aydıncık’ta S401G ve referans gene (full α4) göre tüm popülasyonlarda G198E spesifik aminoasit değişimleri belirlenmiştir. NCBI’dan seçilen aynı gen bölgeleriyle yapılan filogenetik analizlerde bu çalışmada çalışılan her gen kendi gen ailesi içerisinde yer almıştır. Elde edilen bu verilerin neonikotinoid grubu insektisitler nokta mutasyona dayalı dirençle ilgili ileride yürütülebilecek çalışmalara ışık tutması amaçlanmıştır.

Comparison of nicotinic acetylcholine receptor genes in Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) populations

Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect nervous system. Neonicotinoid group insecticides target these receptors, causing mortality at the insects. Phylogenetic relationship was revealed comparing nAChR α1, α3, and α4 genes for the some Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations belonging to East Mediterranean Region. Five B. tabaci populations collected from Karataş-Gossypium hirsutum (Adana), Aydıncık-Solanum lycopersicum, Erdemli-S. lycopersicum, (Mersin), Samandag-Cucumis sativus (Hatay), and Kumluca-Capsicum annum (Antalya) were used for the experiment. When nAChR α1, 3, and 4 genes were compared for all populations, no differences were determined for the α1 gene. However, V147I, A227T, and T534I unique amino acid changes in all populations according to the reference gene (full α3) in the α3 gene, S401G in Aydıncık, and G198E in all populations according to a reference gene (full α4) were determined. Phylogenetic tree results indicate that each novel isolates were clustered its own gene group of represensative isolates deposited from NCBI. The obtained results could shed light on the projects that can be carried out in the future regarding the point mutation-based resistance to the neonicotinoid group insecticides.

___

  • Abbink J., 1991. The biochemistry of imidacloprid. Pflanzenschutz-NACh. Richten Bayer, 44, 198-195.
  • Bass C., Lansdell S.J., Millar N.S., Schroeder I., Turbergc A., Fielda L.M., Williamsona M.S., 2006. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Insect Biochemistry and Molecular Biology, 36, 86–96.
  • Bass C., Puinean A.M., Andrews M., Cutler P., Daniels M., Elias J., Paul V.L., Crosswaite A.J., Denholm I., Field L.M., Foster S.P., Lind R., Williamson M.S., Slater R., 2011. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience, 12, 51.
  • Bayhan E., Ulusoy M.R., Brown J.K., 2006. Host range, distribution, and natural enemies of Bemisia tabaci ‘B biotype’ (Hemiptera: Aleyrodidae) in Turkey. Journal of Pest Science, 79 (4), 233-240.
  • Boffi J.C., Marcovich I., Gill-Thind J.K., Corradi J., Collins T., Lipovsek M.M., Moglie M., Plazas P.V., Craig P.O., Millar N.S., Bouzat C., Elgoyhen A.B., 2017. Differential contribution of subunit interfaces to α9α10 nicotinic acetylcholine receptor function. Molecular Pharmacology, 91 (3), 250-262.
  • Blom N., Gammeltoft S., Brunak S., 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 294 (5), 1351-1362.
  • Brown J.K., Frohlich D.E., Rosell R.C., 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology, 40 (1), 511-534.
  • Byrne D.N., Bellows Jr T.S., 1991. Whitefly biology. Annual Review of Entomology, 36 (1), 431-457.
  • Felsenstein J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783-791.
  • Gao J.R., Deacutis J.M., Scott J.G., 2007. The nicotinic acetylcholine receptor subunits Mda5 and Mdb3 on autosome 1 of Musca domestica are not involved in spinosad resistance. Insect Molecular Biology, 16 (6), 691–701.
  • Guo J-M., Luo J., Feng L., Li F., Lin K., Wang G., 2018. Cloning and bioinformatics analysis of eight nicotinic acetylcholine receptor genes in Cydia pomonella. Journal of Environmental Entomology, 40 (3), 624-632.
  • Ilias A., Lagnel J., Kapantaidaki D., Roditakis E., Tsigenopoulos C.S., Vontas J., Tsagkarakou A., 2015. Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype. BMC genomics, 16 (1), 939.
  • Jactel H., Verheggen F., Thiéry D., Escobar-Gutiérrez A.J., Gachet E., Desneux N., Neonicotinoids Working Group., 2019. Alternatives to neonicotinoids. Environment International, 129, 423-429.
  • Jones A.K., Sattelle D.B., 2010. Diversity of insect nicotinic acetylcholine receptor subunits. In: Insect nicotinic acetylcholine receptors. Thany, S.H. (Ed.). Springer, New York, NY, 25-43 p.
  • Jones D.T., Taylor W.R., Thornton J.M., 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8 (3), 275-282.
  • Karunker I., Juergen B., Bettina L., Tanja P., Nauen R., Emmanouil R., John V., Kevin G., Ian D., Shai M., 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology, 38 (6), 634-44.
  • Karut K., 2007. Host instar suitability of Bemisia tabaci (Genn.) (Hom.: Aleyrodidae) for the parasitoid Eretmocerus mundus (Hym.: Aphelinidae). Journal of Pest Science, 80 (2), 93-97.
  • Kimura M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120.
  • Krogh A., Larsson B., von Heijne G., Sonnhammer E.L., 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305 (3), 567–580.
  • Liu Z., Williamson M.S., Lansdell S.J., Denholm I., Han Z., Millar N.S., 2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (Brown planthopper). Proceedings of the National Academy of Sciences of the United States of America, 102 (24), 8420–8425.
  • Meng X., Zhang Y., Guo B., Sun H., Liu C., Liu Z., 2015. Identification of key amino acid differences contributing to neonicotinoid sensitivity between two nAChR α subunits from Pardosa pseudoannulata. Neuroscience Letters, 584, 123-128.
  • Nauen R., Denholm I., 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Archives of Insect Biochemistry and Physiology, 58 (4), 200-215.
  • Nauen R., Vontas J., Kaussmann M., Wolfel K., 2013. Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. Pest Management Science, 69 (4), 457–61.
  • NCBI, 2020. https://www.ncbi.nlm.nih.gov/ nuccore/?term=Bemisia+tabaci+Nicotinic+ acetylcholine (Erişim tarihi: 12.02.2019).
  • Nicholas K.B., Nicholas H.B.J., Deerfield D.W., 1997. GeneDoc: analysis and visualization of genetic variation. http://www.psc.edu/biomed/genedoc, EMBNEW. NEWS, 4, 14.
  • Roditakis E., Morou E., Tsagkarakou A., Riga M., Nauen R., Paine M., Vontas J., 2011. Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross metabolism potential of the recombinant enzyme. Insect Science, 18 (1), 23–29.
  • Saitou N., Nei M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406-425.
  • Sonnhammer E.L., von Heijne G., Krogh A.A., 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings International Conference on Intelligent Systems for Molecular Biology, 6, 175–182.
  • Satar G., Ulusoy M.R., 2016. Akdeniz Bölgesi’nden toplanan Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) popülasyonlarının biyotiplerinin belirlenmesi. Türkiye Entomoloji Bülteni, 6 (3, 205-212.
  • Satar G., Ulusoy M.R., Dong K., 2014. Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae)’de iki yeni nikotinik asetil kolin reseptör geninin (nAChR) moleküler karakterizasyonu. Türkiye V. Bitki Koruma Kongresi, 3-5 Şubat 2014, Antalya, 35 s.
  • Satar G., Ulusoy M.R., Nauen R., Dong K., 2018. Neonicotinoid insecticide resistance among populations of Bemisia tabaci in the Mediterranean region of Turkey. Bulletin of Insectology, 71 (2), 171-177.
  • Sattelle D.B., 2009. Invertebrate nicotinic acetylcholine receptors. Journal of Pesticide Science, 34 (4), 233-240.
  • Stenersen J., 2004. Nicotinoids and neonicotinoids chemical pesticides. Mode of Action and Toxicology, CRC Press, USA, 296 p.
  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., 2013. MEGA6: Molecular evolutionary genetics analysis, version 6.0. Molecular Biology and Evolution, 30 (12), 2725-2729.
  • Tan J., Salgado V.L., Hollingworth R.W., 2008. Neural actions of imidacloprid and their involvement in resistance in the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pest Management Science, 64 (1), 37–47.
  • Tang P.A., Jiang H.B., Xu Y.Q., An F.M., Wang J.J., 2009. Molecular characterization of two nicotinic acetylcholine receptor subunits from Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Archieves of Insect Biochemistry and Physiology, 72 (1), 34–47.
  • TAB, 2018. Neonicotinoid grubu aktif maddelerin yasaklanması ve kısıtlanması kararı. TC Tarım ve Orman Bakanlığı, Gıda ve Kontrol Genel Müdürlüğü, Karar Yazısı, Sayı: 81466379-320.04.02-E.3768012, Tarih: 19.12.2018. http://www.tab.org.tr/dergi/tab-dergi-2/files/basic-html/ page36.html. TAB Arıcılık Dergisi, 2, 32-36.
  • Tomizawa M., Casida J.E., 2001. Structure and diversity of insect nicotinic acetylcholine receptors. Pest Management Science, 57 (10), 914–922.
  • Tomizawa M., Casida J.E., 2003. Selective toxicity of neonicotinoids attributable to specifıcity of ınsect and mammalian nicotinik receptors. Annual Review of Entomology, 48, 339–364.
  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25 (24), 4876- 4882.
  • Van Lenteren J.C.V., Noldus L.P.J.J., 1990. Whitefly-plant relationships: behavioural and ecological aspects. In: Whitefly: their bionomics, pest status and management. Gerling, D., (Ed.). Intercept, Andover, 47-89 p.
  • Wang R., Fang Y., Mu C., Qu C., Li F., Wang Z., Luo C., 2018. Baseline susceptibility and cross-resistance of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, in Bemisia tabaci MED from China. Crop Protection, 110, 283-287.
  • Yao M.D., Yang Y.H., Wu S.W., Wu Y.D. 2008a. Cloning and sequence analysis of a α-subunit gene of nicotinic acetylcholine receptor from Bemisia tabaci (Gennadius). Journal of Nanjing Agricultural University, 2. 41 (2), 293-301.
  • Yao X., Song F., Chen F., Zhang Y., Gu J., ,Liu S., Liu Z., 2008b. Aminoacids within loops D, E and F of insect nicotinic acetylcholine receptor b subunits influence neonicotinoid selectivity. Insect Biochemİstry and Molecular Biology, 38 (9), 834–840.
  • Zhang M., Gaschen B., Blay W., Foley B., Haigwood N., Kuiken C., Korber B., 2004. Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology, 14 (12), 1229-1246.
  • Zhao Y., Yang Y.H., Wu S.W., Wu Y.D., 2009. Cloning, sequence analysis and developmental expression of a cDNA encoding nicotinic acetylcholine receptor a subunit from Plutella xylostella (L.) (Lepidoptera: Plutellidae). Acta Entomologica Sinica, 52 (1), 17–26.
  • Zewen L., Zhaojun H., Yinchang W., Lingchun Z., Hongwei Z., Chengjun L., 2003. Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms. Pest Management Science, 59 (12), 1355–1359.
Bitki Koruma Bülteni-Cover
  • ISSN: 0406-3597
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1952
  • Yayıncı: Zirai Mücadele Merkez Araştırma Enstitüsü Müdürlüğü
Sayıdaki Diğer Makaleler

Türkiye’nin bazı bölgelerinde Rhynchosporium commune (Zaffarona, McDonald & Linde)’nin patotiplerinin belirlenmesi

Mohammad Reza AZAMPARSA, Aziz KARAKAYA

Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) popülasyonlarında nikotinik asetilkolin reseptör genlerinin karşılaştırılması

Gül SATAR, Mehmet Rifat ULUSOY

Nohutta sorun olan Rhizoctonia tür ve anastomosis gruplarına karşı bazı nohut çeşitlerinin reaksiyonlarının belirlenmesi

Gürkan BAŞBAĞCI, Sara DOLAR

Siirt ili Antep fıstığı (Siirt çeşidi) bahçelerinde Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae)’nın popülasyon gelişmesi

Halil DİLMEN, Mehmet Salih ÖZGÖKÇE

Bağ küllemesi hastalığına (Erysiphe necator Schw.) karşı farklı ilaçlama programlarının etkinliğinin belirlenmesi

Duygu MERMER DOĞU, Damla ZOBAR

Turunçgil Antraknoz Etmeni Colletotrichum gloeosporioides’in LAMP (Loop-Mediated İsothermal Amplification) Tekniği Kullanılarak Hızlı Tanısı

Aysun UYSAL, Şener KURT

Septorya yaprak lekesi hastalığı etmeni Zymoseptoria tritici eşleşme tipi idiomorflarının Türkiye'deki dağılımı

Zemran MUSTAFA

Türkiye’nin bazı bölgelerinde Rhynchosporium commune (Zaffarona, McDonald & Linde)’nin patotiplerinin belirlenmesi

Mohammad Reza AZAMPARSA, Aziz KARAKAYA

Türkiye dut üretimini tehdit edebilecek bir zararlı: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae)

Gürsel ÇETİN, Pinar HEPHIZLI, Mustafa ÖZDEMİR, Yilmaz BOZ

Armut çeşitlerinin SSR markörlerine göre genetik çeşitliliğinin belirlenmesi ve Armut memeli pasına (Gymnosporangium fuscum) reaksiyonları

Suat KAYMAK, Hasan PİNAR