Armut çeşitlerinin SSR markörlerine göre genetik çeşitliliğinin belirlenmesi ve Armut memeli pasına (Gymnosporangium fuscum) reaksiyonları

Armut, Türkiye ve dünyanın farklı ekolojik koşullarında yaygın olarak yetiştirilen bir bitki türüdür. Armut yetiştiriciliği Türkiye'de uzun bir geçmişe sahiptir, ancak bu eşsiz genetik kaynakların tarımsal ekosistemdeki ve genetik erozyondaki değişimler nedeniyle nesli tükenme tehlikesi bulunmaktadır. Gymnosporangium fuscum'un neden olduğu armut memeli pas hastalığı, armut ağaçlarının önemli hastalıklarından biridir ve aynı zamanda ardıç ağaçlarında da bulunur (Juniperus oxycedrus L. ve J. excelsa Bieb). Ardıç popülasyonlarının yakınındaki bazı armut bahçelerinde ciddi ekonomik kayıplar görülmüştür. Bu çalışmada, Çöğür ve Quince A (QA) üzerine aşılanmış 25 armut çeşidinin genetik çeşitliliği 13 SSR primer kullanılarak belirlenmiştir ve bu armut çeşitlerinin armut memeli pası (Gymnosporangium fuscum)’na karşı reaksiyon seviyeleri incelenmiştir. 25 ticari açıdan önemli armut çeşidi iki ana grup içinde yakın ilişkili olarak ele alınmıştır. Bu SSR markörleri armut genetik çeşitliliğin tanımlanmasında faydalı ve güvenilir olarak kullanılabileceğini göstermiştir. Hastalık şiddeti oranlarına göre yıllar ve anaçlar arasındaki fark istatistiki yönden önemli bulunmuştur. Hastalık tüm armut çeşitlerinde görülmüş ve hiçbir armut çeşidi hastalığa karşı dayanıklı olarak değerlendirilmemiştir. QA anaçlı armut çeşitlerinde çöğür anacına göre hastalık şiddeti daha yüksek tespit edilmiştir.

Genetic diversity of pear cultivars using SSR markers and their reactions to pear rust (Gymnosporangium fuscum)

Commonly grown in different ecological conditions of Turkey and the world, pear (Pyrus communis L.), as a plant species, has a long cultivation history in Turkey. However, its unique genetic resources are in danger of extinction due to changes in the agro-ecosystem and genetic erosion. In addition, pear rust caused by Gymnosporangium fuscum is one of the significant diseases of pear. Severe economic losses have been reported in some pear orchards near the extensive juniper populations. In the present study, the genetic diversity and sensitivity level to pear rust (Gymnosporangium fuscum) of 25 local and commercially important pear varieties grafted on seedling and Quince A (QA) was determined using 13 SSR primers. The selected verities were clustered into two major groups that were closely related. The SSR markers provided reliable genotyping and demonstrated their usefulness for identifying pear genetic diversity. The difference between years and rootstocks according to disease severity rates was found to be statistically significant. Although none of the pear varieties assessed in these experiments were resistant to rust, the disease severity of the pear varieties of QA rootstock was generally higher than that of the seedling varieties.

___

  • Ahmed M., Anjum M.A., Khan M.Q., Ahmed M.J., Pearce S., 2010. Evaluation of genetic diversity in Pyrus germplasm native to Azad Jammu and Kashmir (Northern Pakistan) revealed by microsatellite markers. African Journal of Biotechnology, 9 (49), 8323-8333.
  • Agrios G.N., 2005. Plant pathology (Fifth Edition). ISBNO-12-044565-4, California, USA, 574-576.
  • Akçay M., Büyükyılmaz M., Burak M., 2009. Marmara Bölgesi için ümitvar armut çeşitleri. IV. Bahçe Dergisi, 38 (1), 1‐10.
  • Anonymous, 1996. Procedures of plant protection products registration. Ministry of Food Agriculture and Livestock General Directorate of Agricultural Research and Policy, Ankara, Turkey.
  • Anonymous, 2008. Plant protection pesticides technical instructions, Vol. 4, Ministry of Food Agriculture and Livestock General Directorate of Agricultural Research and Policy, Ankara, Turkey. 9-12 p.
  • Aranzana M., Pineda A., Cosson P., Dirlewanger E., Ascasibar J., Cipriani G., Lezzoni A., 2003a. A set of simple sequence repeat (SSR) markers covering the Prunus genome. Theoretical and Applied Genetics, 106, 819-825.
  • Aranzana M.J., Carbó J., Arús P., 2003b. Using amplified fragment-length polymorphisms (AFLPs) to identify peach cultivars. Journal of the American Society for Horticultural Science, 128 (5), 672-677.
  • Aranzana M.J., Garcia‐Mas J., Carbo J., Arús P., 2002. Development and variability analysis of microsatellite markers in peach. Plant Breeding, 121 (1), 87-92.
  • Bao L., Chen K., Zhang D., Cao Y., Yamamoto T., Teng Y., 2007. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genetic Resources and Crop Evolution, 54 (5), 959-971.
  • Barakat M.N., Al-Doss A.A., Elshafei A.A., Moustafa K.A., 2011. Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Australia Journal of Crop Science, 5, 104–110.
  • Bassil N., Postman J., Hummer K., Dolan S., Lawliss L., 2008. Molecular fingerprints identify historic pear trees in two U.S. national parks. Acta Horticulturae, 800, 417–422.
  • Bassil N., Postman J., 2009. Identification of European and Asian pears using EST-SSRs from Pyrus. Genetic Resources and Crop Evolution, 57 (3), 357-370.
  • Bouhadida M., Casas A.M., Moreno M.A., Gogorcena Y., 2007. Molecular characterization of Miraflores peach variety and relatives using SSRs. Scientia Horticulturae, 111 (2), 140-145.
  • Bostan S.Z., Acar Ş., 2012. Ünye’de (Ordu) yetiştirilen yerel armut çeşitlerinin pomolojik özellikleri. Akademik Ziraat Dergisi, 1 (2), 97-106.
  • Brini W., Mars M., Hormaza J.I., 2008. Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Scientia Horticulturae, 115, 337-341.
  • Cao Y.F., Liu F.Z., Gao Y., Jiang L.J., Wang K., Ma Z.Y., Zhang K.C., 2007. SSR analysis of genetic diversity of pear cultivars. Acta Horticulturae Sinica, 34, 305-310.
  • Cheng Z., Huang H., 2009. SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Scientia Horticulturae, 120 (2), 188-193.
  • Dice L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26 (3), 297-302.
  • Dirlewanger E., Cosson P., Howad W., Capdeville G., Bosselut N., Claverie M., Laigret F., 2004. Microsatellite genetic linkage maps of myrobalan plum and an almond peach hybrid-location of root-knot nematode resistance genes. Theoretical and Applied Genetics, 109, 827-838.
  • Dirlewanger E., Cosson P., Tavaud M., Aranzana M., Poizat C., Zanetto A., Arús P., Laigret F., 2002. Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theoretical and Applied Genetics, 105 (1), 127–138.
  • Erfani J., Ebadi A., Abdollahi H., Fatahi R., 2012. Genetic diversity of some pear cultivars and genotypes using simple sequence repeat (SSR) markers. Plant Molecular Biology Reporter, 30, 1065-1072.
  • Fang D.Q., Roose M.L., 1997. Identification of closely related Citrus cultivars with inter simple sequence repeat markers. Theoretical and Applied Genetics, 95, 408–417.
  • FAOSTAT 2017. Retrieved in January, 17, 2019 from http:// faostat.fao.org (accessed date: 17.01.2019).
  • Fernández-Fernández, F., 2010. Final report of Defra project GC0140 ‘Fingerprinting the national apple and pear collections’. http://randd.defra.gov.uk/ (accessed date: 17.01.2019).
  • Fitzner S., Fischer M., 2005. Bewertung von Pyrus–arten auf Befall mit Birnengitterrost (Gymnosporangium sabinae Dicks.). Erwebs – Obstbau, 47, 37-39.
  • Ghosh A.K., Lukens L.N., Hunter D.M., Strommer J.N., 2006. European and Asian pears: simple sequence repeat-polyacyrlamide gel electrophoresis based analysis of commercially important North American cultivars. HortScience, 41 (2), 304-309.
  • Gianfranceschi L., Seglias N., Tarchini R., Komjanc M., Gessler C., 1998. Simple sequence repeats for the genetic analysis of apple. Theoretical and Applied Genetics, 96, 1069-1076.
  • Hokanson S.C., Lamboy W.F., Szewc-McFadden A.K., McFerson J.R., 2001. Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica, 118, 281-294.
  • Hokanson S.C., Szewc-McFadden A.K., Lamboy W.F., McFerson J.R., 1998. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus domestica Borkh. core subset collection. Theoretical and Applied Genetics, 97, 671-683.
  • Howad W., Yamamoto T., Dirlewanger E., Testolin R., Cosson P., Cipriani G., Arús P., 2005. Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics, 171 (3), 1305-1309.
  • Iketani H., Manabe T., Matsuta N., Akihama T., Hayashi T., 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genetic Resources and Crop Evolution, 45, 533-539.
  • Ikinci A., Bolat İ., 2016. Comparison of yield, fruit quality and leaf nutrient content of some pear cultivars. Internatioal Multidiciplinary Congress of Eurasia, 2, 208-219.
  • Infante Espiñeira R., Martínez Gómez P., Predieri S., 2008. Quality oriented fruit breeding: Peach [Prunus persica (L.) Batsch]. Journal of Food Agriculture and Enviroment, 6 (2), 342-356.
  • Juhasova G., Praslieka J., 2002. Occurrence and harmful effects of Gymnosporangium sabinae (Dicks) winter in Slovak republic. Plant Protection Science, 38 (3), 89-93.
  • Kimura T., Iketani H., Kotobuki K., Matsuta N., Ban Y., Hayashi T., Yamamoto T., 2003. Genetic characterization of pear varieties revealed by chloroplast DNA sequences. The Journal of Horticultural Science and Biotechnology, 78 (2), 241-247.
  • Koller B., Lehmann A., Mcdermott J.M., Gessler C., 1993. Identification of apple cultivars using RAPD markers. Theoretical and Applied Genetics, 85, 901-904.
  • Kong H.J., Moon J.Y., Nam B.H., Kim Y.O., Kim W.J., Lee J.H., Kim K.K., Kim B.S., Yeo S.Y., Lee C.H., 2011. Molecular characterization of the autophagy-related gene Beclin-1 from the olive flounder (Paralichthys olivaceus). Fish and Shellfish Immunology, 31 (2), 189-195.
  • Lāce B., Bankina B., 2013. Evaluation of European pear rust severity depending on agro-ecological factors. Research for Rural Development 1, 6-12.
  • Li T.H., Li Y.X., Li Z.C., Zhang H.L., Qi Y.W., Wang T., 2008. Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica). Journal of Integrative Plant Biology, 50 (1), 102-110.
  • Lombard P.B., Westwood M.N., 1987. Pear rootstocks. In: Rootstocks for fruit crops. Rom R.C., Carlson R.F. (eds.). John Wiley and Sons, New York, USA, 145–183.
  • Miranda C., Urrestarazu J., Santesteban L.G., Royo J.B., Urbina V., 2010. Genetic diversity and structure in a collection of ancient Spanish pear cultivars assessed by microsatellite markers. Journal of the American Society for Horticultural Science, 135 (5), 428-437.
  • Monte-Corvo L., Cabrita L., Oliveira C., Leitão J., 2000. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genetic Resources and Crop Evolution, 47, 257-265.
  • Oliveira C.M., Mota M., Monte-Corvo L., Goulao L., Silva D.L., 1999. Molecular typing of Pyrus based on RAPD markers. Scientia Horticulturae, 79, 163-174.
  • Oliveira L.O., Venturini B.A., Rossi A.A.B., Hastenreiter S.S., 2010. Clonal diversity and conservation genetics of the medicinal plant Carapichea ipecacuanha (Rubiaceae). Genetics Molecular Biology, 33 (1), 86-93.
  • Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingley S., Rafalski A., 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2 (3), 225-238.
  • Prokopova B., 2011. The severity of European pear rust depending on pear cultivars. Scientific Works of the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry and Lithuanian University of Agriculture. Sodininkyste ir Darzininkyste, 30 (2), 43-50.
  • Schouten H.J., van de Weg W.E., Carling J., Ali Khan S., McKay S.J., van Kaauwen M.P.W., Wittenberg A.H.J., Koehorst-van Putten H.J.J., Noordijk Y., Gao Z., Rees D.J.G., van Dyk M.M., Jaccoud D., Considine M.J., Kilian A., 2012. Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Molecular Breeding, 29 (3), 645-660.
  • Sisko M., Javornik B., Siftar A., Ivancic A., 2009. Genetic relationships among Slovenian pears assessed by molecular markers. Journal of the American Society for Horticultural Science, 134 (1), 97-108.
  • Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J., Senior M.L., Mitchel S.E., Kresorich S., Tiegle J., 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics, 95,163-173.
  • Sosinski B., Gannavarapu M., Hager L.D., Beck L.E., King G.J., Ryder C.D., Abbott A.G., 2000. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics, 101 (3), 421-428.
  • Unterstenhöfer G., 1963. The basic principles of crop protection orchard trials. Pflanzenschutz-Nachricten, Bayer. 1963/3. 155–156 p.
  • Urbanovich O.Y., Kazlouvskaya Z.A., Yakimovich O.A., Kartel N.A., 2011. Polymorphism of SSR alleles in pear cultivars grown in Belarus. Russian Journal of Genetics, 47, 305-313.
  • Uzun A., Yeşiloğlu T., Polat İ., Aka-Kaçar Y., Gülşen O., Yıldırım B., Tuzcu Ö., Tepe S., Canan İ., Anıl Ş., 2011. Evaluation of genetic diversity in lemons and some of their relatives based on Srap and SSR Markers. Plant Molecular Biology Reporter, 29, 693-701.
  • Volk G.M., Richards C.M., Henk A.D., Reilley A.A., Bassil N.V., Postman J.D., 2006. Diversity of wild Pyrus communis based on microsatellite analyses. Journal of the American Society for Horticultural Science, 131, 408-417.
  • Wu J., Wang Z., Shi Z., Zhang S., Ming R., Zhu S., Khan M.A., Tao S., Korban S.S., Wang H., 2013. The genome of pear (Pyrus bretschneideri Rehd.). Genome Research, 23, 396-408.
  • Wünsch A., Hormaza J.I., 2007. Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Scientia Horticulturae, 113 (1), 37-43.
  • Wünsch A., Carrera M., Hormaza J.I., 2006. Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Genetic Resources and Crop Evolution, 53 (5), 925-932.
  • Xie W.G., Zhang X.Q., Cai H.W., Liu W., Peng Y., 2010. Genetic diversity analysis and transferability of cereal EST-SSR markers to orchardgrass (Dactylis glomerata L.). Biochemical Systematics and Ecology, 38 (4), 740-749.
  • Xuan H. 2008. Identifying european pear (Pyrus communis L.) cultivars at the KOB by using apple SSRs. Acta Horticulturae, 800, 439–445.
  • Yakovin N.A., Fesenko I.A., Isachkin A.V., Karlov G.I., 2011. Polymorphism of microsatellite loci in cultivars and species of pear (Pyrus L.). Russian Journal of Genetics, 47, 564-570.
  • Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban Y., Hayashi T., Matsuta N., 2001. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theoretical and Applied Genetics, 102, 865-870.
  • Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., Ban Y., Matsuta N., 2002a. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theoretical and Applied Genetics, 106, 9-18.
  • Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., Hayashi T., Ban Y., Matsuta N., 2002b. Simple sequence repeats for genetic analysis in pear. Euphytica, 124, 129-137.
  • Yamamoto T., Kimura T., Shoda M., Ban Y., Hayashi T., Matsuta N., 2002c. Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Molecular Ecology Notes, 2 (1), 14-16.
  • Zhang D., Shu Q., Teng Y.W., Qiu M.H., Bao L., Hu H.J., 2007. Simple sequence repeat analysis on genetic assessment of Chinese red skinned sand pear cultivars. Acta Horticulturae Sinica, 34, 47-52.
Bitki Koruma Bülteni-Cover
  • ISSN: 0406-3597
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1952
  • Yayıncı: Zirai Mücadele Merkez Araştırma Enstitüsü Müdürlüğü
Sayıdaki Diğer Makaleler

Türkiye’nin bazı bölgelerinde Rhynchosporium commune (Zaffarona, McDonald & Linde)’nin patotiplerinin belirlenmesi

Mohammad Reza AZAMPARSA, Aziz KARAKAYA

Ankara ili kışlık sebze üretim alanlarında Cauliflower mosaic virus’u ve vektörlerinin serolojik ve moleküler olarak tanılanması

Ahmad HEKMAT KASHTİBAN, Filiz ERTUNÇ

Nohutta sorun olan Rhizoctonia tür ve anastomosis gruplarına karşı bazı nohut çeşitlerinin reaksiyonlarının belirlenmesi

Gürkan BAŞBAĞCI, Sara DOLAR

Armut çeşitlerinin SSR markörlerine göre genetik çeşitliliğinin belirlenmesi ve Armut memeli pasına (Gymnosporangium fuscum) reaksiyonları

Suat KAYMAK, Hasan PİNAR

Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) popülasyonlarında nikotinik asetilkolin reseptör genlerinin karşılaştırılması

Gül SATAR, Mehmet Rifat ULUSOY

Turunçgil Antraknoz Etmeni Colletotrichum gloeosporioides’in LAMP (Loop-Mediated İsothermal Amplification) Tekniği Kullanılarak Hızlı Tanısı

Aysun UYSAL, Şener KURT

Türkiye dut üretimini tehdit edebilecek bir zararlı: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae)

Gürsel ÇETİN, Pinar HEPHIZLI, Mustafa ÖZDEMİR, Yilmaz BOZ

Bağ küllemesi hastalığına (Erysiphe necator Schw.) karşı farklı ilaçlama programlarının etkinliğinin belirlenmesi

Duygu MERMER DOĞU, Damla ZOBAR

Siirt ili Antep fıstığı (Siirt çeşidi) bahçelerinde Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae)’nın popülasyon gelişmesi

Halil DİLMEN, Mehmet Salih ÖZGÖKÇE

Türkiye’nin bazı bölgelerinde Rhynchosporium commune (Zaffarona, McDonald & Linde)’nin patotiplerinin belirlenmesi

Mohammad Reza AZAMPARSA, Aziz KARAKAYA