DİREKT ASİT LİÇİ İLE BASTNAZİT CEVHERİNDEN LANTANYUM VE SERYUM KAZANIMI

Direkt asit liçi ile bir bastnazit cevherinden lantanyum (La) ve seryum (Ce) ekstraksiyonu araştırılmıştır. Bastnazit cevherinden La ve Ce ekstraksiyonuna asit konsantrasyonu ve liç sıcaklığının etkileri test edilmiştir. Nitrik asit (NHO3) kullanarak La ve Ce’un %85’ten fazlası liç çözeltisine alınmıştır ancak çözünme değerleri sülfürik asit (H2SO4) kullanıldığında %85’ten az olarak belirlenmiştir. La çözünümü hidroklorik asit (HCl) kullanımıyla %90’ı geçmiştir fakat Ce çözünümü %20 (g/L) katı-sıvı oranı, %20 asit konsantrasyonu, 25 °C liç sıcaklığı ve 1 saat liç süresi şartları altında %85’in altında kalmıştır. Sonuçlar bastnazit cevherinden eş zamanlı olarak maksimum La ve Ce çözünümüne ulaşılabilmek için çözücü olarak HNO3 kullanılabileceğini ortaya koymuştur. Çözücü olarak HNO3 ve HCl tercih edildiğinde liç sıcaklığının La ve Ce çözünümüne önemli bir etki yapmadığı belirlenmiştir. Fakat çözücü olarak H2SO4 kullanılmasıyla liç sıcaklığının La ve Ce çözünmeleri üzerine hafif bir pozitif etkisi saptanmıştır.

EXTRACTION OF LANTHANUM AND CERIUM FROM A BASTNASITE ORE BY DIRECT ACIDIC LEACHING

The extraction of lanthanum (La) and cerium (Ce) from a bastnasite ore by direct acidic leaching was investigated. The effects of acid concentration and leaching temperature on the extraction of La and Ce from the ore were tested. Using nitric (NHO3), more than 85% of the La and Ce were simultaneously extracted into leach solution whereas the La and Ce dissolutions were determined as less than 85% by using sulfuric acid (H2SO4). The La dissolution exceeded 90% by using hydrochloric acid (HCl); however, the Ce dissolution remained below 85% under the following conditions: solid-to-liquid ratio of 20% (w/v), the acid concentration of 20%, leaching temperature of 25 °C and leaching time of 1 h. The result revealed that HNO3 could be used as a solvent for the maximum simultaneous extraction of the La and Ce from the bastnasite ore. The leaching temperature had no crucial effect on the dissolution of La and Ce when HNO3 or HCl solutions were preferred as a solvating agent. However, the leaching temperature had a slight positive effect on the dissolutions of La and Ce when H2SO4 was used as a solvent.

___

  • Chelgani, S. C., Rudolph, M., Leistner, T., Gutzmer, J., Peuker, U. A., 2015. A Review of Rare Earth Minerals Flotation: Monazite and Xenotime. International Journal of Mining Science and Technology, 25 (6), 877-883.
  • Chen, Z., 2011. Global Rare Earth Resources and Scenarios of Future Rare Earth Industry. Journal of Rare Earths, 29 (1), 1-6.
  • Demol, J., Ho, E. Soldenhoff, K., Senanayake, G., 2019. The Sulfuric Acid Bake and Leach Route for Processing of Rare Earth Ores and Concentrates: A Review. Hydrometallurgy, 188, 123-139.
  • Demol, J., Ho, E., Senanayake, G., 2018. Sulfuric Acid Baking and Leaching of Rare Earth Elements, Thorium and Phosphate from a Monazite Concentrate: Effect of Bake Temperature from 200 to 800 °C. Hydrometallurgy, 179, 254-267.
  • Feng, J., Zhou, F., Chi, R., Liu, X., Xu, Y., Liu, Q., 2018. Effect of a Novel Compound on Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ore. Minerals Engineering, 129, 63-70.
  • Gupta, C. K., Krishnamurthy, N., 2005. Extractive Metallurgy of Rare Earths. CRC Press, Florida.
  • Huang, Z., Fan, M., Tian, H., 2019. Rare Earth Elements of Fly Ash from Wyoming’s Powder River Basin Coal. Journal of Rare Earths, 38 (2), 219-226.
  • Jha, M. K., Kumari, A., Panda, R., Kumar, J. R., Yoo, K., Lee, J. Y., 2016. Review on Hydrometallurgical Recovery of Rare Earth Metals. Hydrometallurgy, 165 (1), 2-26.
  • Jowitt, S. M., Werner, T. T., Weng, Z., Mudd, G. M., 2018. Recycling of the Rare Earth Elements. Current Opinion in Green and Sustainable Chemistry, 13, 1-7.
  • Kul, M., Topkaya, Y., Karakaya, I., 2008. Rare Earth Double Sulfates from Pre-Concentrated Bastnasite. Hydrometallurgy, 90, 129-135.
  • Kursun, I., Tombal, T. D., Terzi, M., 2018. Solubility of Eskisehir Thorium/Rare Earth Ores in Sulphuric and Nitric Acids. Physicochem. Probl. Miner. Process., 54 (2), 476-483.
  • Liu, H., Li, S., Wang, B., Wang, K., Wu, R., Ekberg, C., Volinsky, A. A., 2019. Multiscale Recycling Rare Earth Elements from Real Waste Trichromatic Phosphors Containing Glass. Journal of Cleaner Production, 238, 117-998.
  • Lucas, J., Lucas, P., Le Mercier, T., Rollat, A., Davenport, W. G., 2014. Rare Earths: Science, Technology, Production and Use. Elsevier.
  • Peiravi, M., Ackah, L., Guru, R., Mohanty, M., Liu, J., Xu, B., Zhu, X., Chen, L., 2017. Chemical Extraction of Rare Earth Elements from Coal Ash. Mining, Metallurgy & Exploration, 34, 170-177.
  • Swain, N., Mishra, S., 2019. A Review on the Recovery and Separation of Rare Earths and Transition Metals from Secondary Resources. Journal of Cleaner Production, 220, 884-898.
  • Tang, M., Zhou, C., Pan, J., Zhang, N., Liu, C., Cao, S., Hu, T., Ji, W., 2019. Study on Extraction of Rare Earth Elements from Coal Fly Ash Through Alkali Fusion – Acid Leaching. Minerals Engineering, 136, 36-42.
  • Tuan, L.Q., Thenepalli, T., Chilakala, R., Vu, H. H. T., Ahn, J. W., Kim, J., 2019. Leaching Characteristics of Low Concentration Rare Earth Elements in Korean (Samcheok) CFBC Bottom Ash Samples. Sustainability, 11, 2562.
  • Yin, X., Tian, X., Wu, Y., Zhang, Q., Wang, W., Li, B., Gong, Y., Zuo, T., 2018. Recycling Rare Earth Elements from Waste Cathode Ray Tube Phosphors: Experimental Study and Mechanism Analysis. Journal of Cleaner Production, 205, 58-66.
  • Yorukoglu, A., Obut, A., Girgin, I., 2003. Effect of Thiourea on Sulphuric Acid Leaching of Bastnaesite. Hydrometallurgy, 68, 195-202.
  • Zhang, Z., Sun, N., He, Z., Chi, R., 2018. Local Concentration of Middle and Heavy Rare Earth Elements in the Col on The Weathered Crust Elution-Deposited Rare Earth Ores. Journal of Rare Earths, 36 (5), 552-558.
  • Zhou, F., Liu, Q., Feng, J., Su, J., Liu, X., Chi, R., 2019. Role of Initial Moisture Content on the Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ores. Separation and Purification Technology, 217, 24-30.