DOLOMİT İÇEREN BİR ÇİNKO CEVHERİNİN SODYUM HİDROKSİT ÇÖZELTİLERİNDEKİ ÇÖZÜNME ÖZELLİKLERİ

Bu çalışmada, dolomit içeren bir çinko karbonat (simitsonit) cevher numunesinin (%24,22 ZnO) sodyum hidroksit çözeltilerindeki çözünme özellikleri X-ışını kırınımı (XRD), Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR), ısıl (TG/DTA) ve kimyasal analiz yöntemleri kullanılarak belirlenmiştir. Sodyum hidroksit derişiminin 1’den 4 M’ye artırılmasıyla çinko çözünme verimi değerinin sürekli olarak arttığı gözlenmiş ve %70,7’lik en yüksek çinko çözünme verimine 298 K sıcaklıktaki 4 M NaOH çözeltisinde yapılan çözme işlemi sonrasında ulaşılmıştır. Cevher numunesinin 298 K’deki 4 M NaOH çözeltisinde çözündürülmesi sonrasında elde edilen çözünmemiş katıların XRD, FT-IR, TG/DTA ve kimyasal analizleri, numune içindeki simitsonit fazının tamamen çözündüğü halde ana gang minerali dolomitin büyük ölçüde çözünmeden kaldığını ortaya çıkarmakta, bu durum da çinko çözünmesi dikkate alındığında sodyum hidroksit çözeltisinin seçiciliğini göstermektedir. Numunedeki simitsonit fazının tümünün çözünmesine rağmen yüzde yüz çinko çözünme verimine ulaşılamaması, çalışılan cevher numunesi içinde bulunan dolomit, kil mineralleri vb. gibi gang bileşenlerindeki muhtemel çinko varlığını işaret etmektedir.

DISSOLUTION PROPERTIES OF A DOLOMITE CONTAINING ZINC ORE IN SODIUM HYDROXIDE SOLUTIONS

In this work, the dissolution properties of a dolomite containing zinc carbonate (smithsonite) ore sample having 24.22% ZnO were determined in sodium hydroxide solutions using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal (TG/DTA) and chemical analyses methods. It was observed that the dissolution efficiency value of zinc continuously increased with the increase of sodium hydroxide concentration from 1 to 4 M and the highest zinc dissolution efficiency of 70.7% was reached after dissolution in 4 M NaOH solution at temperature of 298 K. The XRD, FT-IR, TG/DTA and chemical analyses of undissolved solids obtained after dissolution of ore sample in 4 M NaOH solution at 298 K revealed that the smithsonite phase in the sample completely dissolved whereas the main gangue mineral dolomite remained practically unaffected, showing the selectivity of sodium hydroxide solution considering zinc dissolution. Although the smithsonite phase in the sample totally dissolved, hundred percent zinc dissolution efficiency could not be reached, which may indicate the presence of zinc in the gangue components, i.e. dolomite, clay minerals etc., of the studied ore sample.

___

  • Abkhoshk, E., Jorjani, E., Al-Harahsheh, M. S., Rashchi, F., Naazeri, M., 2014. Review of the Hydrometallurgical Processing of Non-sulfide Zinc Ores. Hydrometallurgy, 149, 153-167.
  • Adler, H. H., Kerr, P. F., 1963. Infrared Absorption Frequency Trends for Anhydrous Normal Carbonates. Am. Mineral., 48, 124-137.
  • Arfè, G., Mondillo, N., Balassone, G., Boni, M., Cappelletti, P., Di Palma, T., 2017. Identification of Zn-bearing Micas and Clays from the Cristal and Mina Grande Zinc Deposits (Bongará province, Amazonas region, northern Peru). Mineral-Basel, 7, 214.
  • Balassone, G., Nieto, F., Arfè, G., Boni, M., Mondillo, N., 2017. Zn-Clay Minerals in the Skorpion Zn Nonsulfide Deposit (Namibia): Identification and Genetic Clues Revealed by HRTEM and AEM Study. Appl. Clay Sci., 150, 309-322.
  • Boni, M., Schmidt, P. R., De Wet, J. R., Singleton, J. D., Balassone, G., Mondillo, N., 2009a. Mineralogical Signature of Nonsulfide Zinc Ores at Accha (Peru): A Key for Recovery. Int. J. Miner. Process., 93, 267-277.
  • Boni, M., Balassone, G., Arseneau, V., Schmidt, P., 2009b. The Nonsulfide Zinc Deposit at Accha (southern Peru): Geological and Mineralogical Characterization. Econ. Geol., 104, 267-289.
  • Boni, M., Mondillo, N., Balassone, G., Joachimski, M., Coella, A., 2013. Zincian Dolomite Related to Supergene Alteration in the Iglesias Mining District (SW Sardinia). Int. J. Earth. Sci., 102, 61-71.
  • Borg, G., Kärner, K., Buxton, M., Armstrong, R., Van Der Merwe, S. W., 2003. Geology of the Skorpion Supergene Zinc Deposit, Southern Namibia. Econ. Geol., 98, 749-771.
  • Choulet, F., Buatier, M., Barbanson, L., Guègan, R., Ennaciri, A., 2016. Zinc-Rich Clays in Supergene Non-Sulfide Zinc Deposits. Miner. Deposita, 51, 467-490.
  • Coppola, V., Boni, M., Gilg, H. A., Strzelska-Smakowska, B., 2009. Nonsulfide Zinc Deposits in the Silesia-Cracow District, Southern Poland. Miner. Deposita, 44, 559-580.
  • Cuthbert, F. L., Rowland, R. A., 1947. Differential Thermal Analysis of Some Carbonate Minerals. Am. Mineral., 32, 111-116.
  • Debiemme-Chouvy, C., Vedel, J., 1991. Supersaturated Zincate Solutions: A study of the Decomposition Kinetics. J. Electrochem. Soc., 138, 2538-2542.
  • Dhawan, N., Safarzadeh, M. S., Birinci, M., 2011. Kinetics of Hydrochloric Acid Leaching of Smithsonite. Russ. J. Non-Ferr. Met., 52, 209-216.
  • DPT, 2001. State Planning Organization, Eighth Five-year Development Plan, Mining Specialization Commission Report, Subcommittee of Metal Mines, Lead-Zinc-Cadmium Study Group Report. DPT:2628, OİK:639, Ankara, 85-167 (in Turkish).
  • Ehsani, I., Ucyildiz, A., Obut, A., 2019. Leaching Behaviour of Zinc from a Smithsonite Ore in Sodium Hydroxide Solutions. Physicochem. Probl. Mi., 55, 407-416.
  • Ejtemaei, M., Gharabaghi, M., Irannajad, M., 2014. A Review of Zinc Oxide Mineral Beneficiation Using Flotation Method. Adv. Colloid Interfac., 206, 68-78.
  • Feng, L., Yang, X., Shen, Q., Xu, M., Jin, B., 2007. Pelletizing and Alkaline Leaching of Powdery Low-Grade Zinc Oxide ores. Hydrometallurgy, 89, 305-310.
  • Frenay, J., 1985. Leaching of Oxidized Zinc Ores in Various Media. Hydrometallurgy, 15, 243-253.
  • Frost, R. L., Ding, Z., Ruan, H. D., 2003. Thermal Analysis of Goethite Relevance to Australian İndigenous art. J. Therm. Anal. Calorim., 73, 783.
  • Ghasemi, S. M. S., Azizi, A., 2017. Investigation of Leaching Kinetics of Zinc from a Low-grade Ore in Organic and Inorganic Acids. J. Min. Environ., 8, 579-591.
  • Ghasemi, S. M. S., Azizi, A., 2018. Alkaline Leaching of Lead and Zinc by Sodium Hydroxide: Kinetics Modeling. J. Mater. Res. Technol., 7, 118-125.
  • Gillott, J. E., 1964. Mechanism and Kinetics of Expansion in the Alkali-carbonate Rock Reaction. Can. J. Earth Sci., 1, 121-145.
  • Grim, R. E., Rowland, R. A., 1942. Differential Thermal Analysis of Clay Minerals and Other Hydrous Materials. Part 1. Am. Mineral., 27, 746-761.
  • Hitzman, M. W., Reynolds, N. A., Sangster, D. F., Allen, C. R., Carman, C. E., 2003. Classification, Genesis, and Exploration Guides for Nonsulfide Zinc Deposits. Econ. Geol., 98, 685-714.
  • Hosseini, S. H., Forssberg, E., 2009. Smithsonite Flotation Using Mixed Anionic/Cationic Collector. T. I. Min. Metall. C, 118, 186-190.
  • Huang, C. K., Kerr, P. F., 1960. Infrared Study of the Carbonate Minerals. Am. Mineral., 45, 311-324.
  • Hurlbut, C. S. Jr., 1957. Zincian and Plumbian Dolomite from Tsumeb, South-West Africa. Am. Mineral., 42, 798-803.
  • Ju, S., Motang, T., Shenghai, Y., Yingnian, L., 2005. Dissolution Kinetics of Smithsonite ore in Ammonium Chloride Solution. Hydrometallurgy, 80, 67-74.
  • Moezzi, A., Cortie, M., McDonagh, A., 2011. Aqueous Pathways for the Formation of Zinc Oxide Nanoparticles. Dalton T., 40, 4871-4878.
  • Mondillo, N., Boni, M., Balassone, G., Grist, B., 2011. In Search of the Lost Zinc: A Lesson from the Jabali (Yemen) Nonsulfide Zinc Deposit. J. Geochem. Explor., 108, 209-219.
  • Mondillo, N., Boni, M., Balassone, G., Joachimski, M., Mormone, A., 2014. The Jabali Nonsulfide Zn-Pb-Ag Deposit, Western Yemen. Ore Geol. Rev., 61, 248-267.
  • Mondillo, N., Nieto, F., Balassone, G., 2015. Micro- and Nano-characterization of Zn-clays in Nonsulfide Supergene Ores of Southern Peru. Am. Mineral., 100, 2484-2496.
  • Mujahed, S. B., 1966. Electrowinning in Alkaline Medium-Electrolytic Production of Lead and Zinc from an Oxidized Ore from Develi (Kayseri) via Caustic Leaching. MSc Thesis, Middle East Technical Univ.
  • Paradis, S., Keevil, H., Simandl, G. J., Raudsepp, M., 2015. Carbonate-hosted Nonsulphide Zn-Pb Mineralization of Southern British Columbia, Canada. Miner. Deposita, 50, 923-951.
  • Rosenberg, P. E., Champness, P. E., 1989. Zincian Dolomites and Associated Carbonates from the Waryński Mine, Poland: An AEM investigation. Am. Mineral., 74, 461-465.
  • Santoro, L., Boni, M., Rollinson, G. K., Mondillo, N., Balassone, G., Clegg, A. M., 2014. Mineralogical Characterization of the Hakkari nonsulfide Zn(Pb) Deposit (Turkey): The Benefits of QEMSCAN®. Miner. Eng., 69, 29-39.
  • Uekawa, N., Yamashita, R., Wu, Y. J., Kakegawa, K., 2004. Effect of Alkali Metal Hydroxide on Formation Processes of Zinc Oxide Crystallites from Aqueous Solutions Containing Zn(OH)42– ions. Phys. Chem. Chem. Phys., 6, 442-446.
  • Wang, Y. M., Wainwright, G., 1986. Formation and Decomposition Kinetic Studies of Calcium Zincate in 20 w/o KOH. J. Electrochem. Soc., 133, 1869-1872.
  • Weir, C. E., Lippincott, E. R., 1961. Infrared Studies of Aragonite, Calcite, and Vaterite Type Structures in the Borates, Carbonates, and Nitrates. J. Res. N.B.S. A Phys. Ch., 65, 173-183.
  • Whittaker, E. J. W., Żabiński, W., 1981. X-ray Diffraction by Zincian Dolomite. Mineralog. Pol., 12, 15-24.
  • Zhang, Y., Deng, J., Chen, J., Yu, R., Xing, X., 2013. Leaching of Zinc from Calcined Smithsonite Using Sodium Hydroxide. Hydrometallurgy, 131&132, 89-92.
  • Zhao, Y., Stanforth, R., 2000. Production of Zn Powder by Alkaline Treatment of Smithsonite Zn-Pb Ores. Hydrometallurgy, 56, 237-249.