Marmara Bölgesinde Bulunan Organize Sanayi Bölgelerinin Atık Su Arıtma Tesislerinde Oluşan Arıtma Çamurlarının Enerji Kaynağı Olarak Kullanımının Değerlendirilmesi

Bu çalışmanın amacı Marmara Bölgesinde bulunan organize sanayi bölgelerinin atıksu arıtma tesislerinden çıkan arıtma çamurlarının karakterini ve miktarını tespit ederek, çamurun en uygun bertarafının yanında kalorifik değerine göre üretilebilecek enerji miktarının tespit edilmesidir. Bu amaç doğrultusunda Marmara Bölgesindeki endüstriyel nitelikli arıtma çamurlarının miktar ve özellikleri belirlenerek çamurdan üretilebilecek enerji miktarı tespiti için öncelikle Marmara Bölgesinde bulunan organize sanayi bölgelerinin atık su arıtma tesislerinin kapasitesi, mevcutta arıtılan atık su miktarı ile arıtma faaliyetleri sonucunda açığa çıkan arıtma çamurlarının miktarı tespit edilmiştir. Arıtma çamuru, analiz sonuçları dikkate alınarak tehlikelilik özelliği ve üst ısıl değerine göre sınıflandırılmıştır. Analiz sonucu olmayan arıtma çamurlarının özellikleri ise ağırlıklı sektör grubuna göre diğer arıtma çamurlarına benzetme yapılarak belirlenmiştir. Çamurun biyokatı kütle olarak enerji kaynağı şeklinde kullanılması durumunda, Marmara Bölgesinde atık su arıtma tesisi bulunan 45 OSB’den açığa çıkan arıtma çamurundan yıllık yaklaşık 665 MW enerji üretilebileceği değerlendirilmiştir. Bunun yanında çamurun çimento fabrikalarında ek yakıt olarak kullanılabileceği ve bu şekilde kullanılması durumunda çevreci bir bertaraf yöntemi olarak değerlendirileceği düşünülmektedir. Ülkemizdeki endüstriyel nitelikli arıtma çamurları konusunda bilgiler sınırlı olmakla birlikte çalışmanın bu alanda literatüre önemli katkılar sağlayacağı düşünülmektedir.

Evaluation of the Use of Treatment Sludge Generated in Waste Water Treatment Facilities of Organized Industrial Zones in Marmara Region as Energy Source

The aim of this study is to determine the content and amount of treatment sludge that is emitted by wastewater treatment plants in the Organized Industrial Zones (OIZ) in the Marmara Region. After this has been determined the most appropriate disposal of the sludge and the amount of energy to be produced according to calorific value will be established. In order to determine the amount of energy that can be produced from the sludge after the amount and content of industrial treatment sludge in the Marmara Region have been established, it was necessary to determine the capacity of wastewater treatment plants in the OIZ in the Marmara Region, the amount of wastewater that was currently being treated and the amount of treatment sludge released as a result of these treatment activities. By taking into account the analysis results, the sewage sludge was classified according to its toxity and upper calorific value. The properties of the treatment sludge, which are not included in the analysis, were determined by analogy with other treatment sludges according to the weighted sector group. If the sludge is used as a biosolid mass energy source, it was calculated that approximately 665 MW of energy can be produced annually from the treatment sludge released from 45 OIZs that have wastewater treatment plants in the Marmara Region. In addition, it is thought that the sludge can be used as an additional fuel in cement factories; this method can be considered to be an environmentally friendly disposal method. Although the information about industrial treatment sludge in our country is limited, it is thought that the study will make important contributions to the literature in this field.

___

  • Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A., Khasri, A. (2016). “Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation.” Renewable and Sustainable Energy Reviews, 53: 1333–1347.
  • Savaş, A. F., Kocabaş, C. (2019) “Endüstriyel Kazanlarda Yanma Veriminin Süreç Geliştirme Teknikleri Kullanılarak İyileştirilmesi”. BŞEÜ Fen Bilimleri Dergisi, 6 (2), 357-368.
  • Akyarlı, A., Şahin, H. (2005). “Arıtma Çamurlarının Bertarafında Kireç Kullanımı.” I. Ulusal Arıtma Çamurları Sempozyumu, Antalya.
  • Akpınar, N., (2006). “Kentsel Katı Atıklardan Enerji Üretimi”. Yayınlanmamış Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi. İstanbul, Türkiye.
  • Alexandros, K., Athanasios, S.S. (2012). “Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries”. International journal of integrated waste management, (32)6, 1192.
  • Appels, L., Baeyens, J., Degreve, J., Dewil, R. (2008). “Principles and potential of the anaerobic digestion of waste- activated sludge”. Progress in Energy and Combustion Science, 34:755–781.
  • Areias, I. O. R., Vieira, C. M. F., Colorado, H. A., Delaqua, G. C. G., Monteiro, S. N., Azevedo, A. R. G. (2020). “Could city sewage sludge be directly used into clay bricks for building construction A comprehensive case study from Brazil”. Journal of Building Engineering, 31, Article 101374.
  • Ayvaz, Z., (2000). “Arıtma Çamurlarının Değerlendirilmesi”. Çev-Kor Dergisi, 9(35): 3-12.
  • Bianchini, A., Bonfiglioli, L., Pellegrini, M., Saccani, C. (2016). “Sewage sludge management in Europe: a critical analysis of data quality”. International Journal of environment and waste management, 18(3): 227.
  • Bora, A. P., Gupta, D. P., Durbha, K. S. (2020). “Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel”. Fuel, 259, Article 116262.
  • Bozkurt, A.U., (2008). “Yenilenebilir Enerji Kaynaklarının Enerji Verimliliği Açısından Değerlendirilmesi”. Yayınlanmamış Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi. İzmir, Türkiye.
  • Chang, Z., Long, G., Zhou, J. L., Ma, C. (2020). “Valorization of sewage sludge in the fabrication of construction and building materials: A review”. Resources, Conservation & Recycling, 154, Article 104606.
  • Choi, O. K., Park, J. Y., Kim, J. K., Lee, J. W. (2019). “Bench- scale production of sewage sludge derived-biodiesel (SSD- BD) and upgrade of its quality”. Renewable Energy, 141: 914- 921.
  • Cremades, L. V., Cusido, J. A., Arteaga, F. (2018). “Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles”. Journal of Cleaner Production, 201: 1071-1080.
  • Commission of European Communities. (1998). “Council Directive 91/271/EEC 21 March 1991 concerning urban waste-water treatment”. (amended by the 98/15/EC of 27 February 1998).
  • Dahhou, M., El Moussaouiti, M., Arshad, M. A., Moustahsine, S., Assafi, M. (2018). “Synthesis and characterization of drinking water treatment plant sludge-incorporated Portland cement”. Journal of Material Cycles and Waste Management, 20: 891-901.
  • Davis, R. (1996). “The impact of EU and UK environmenteal pressures on the future of sludge treatment and disposal”. 65: 9.
  • Doğru, M., Midilli, A., Howarth, C.R., (2002). “Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis”. Fuel Processing Technology, 75(1): 55–82.
  • Eroğlu, M., (2011). “Enerji Çeşitliliği ve Gümüşhane İli Su Potansiyelinin Hidroelektrik MEnerji Üretimi Yönünden İncelenmesi”. Yayınlanmamış Yüksek Lisans Tezi, Gümüşhane Üniversitesi. Gümüşhane-Türkiye.
  • Ewais, E., Elsaadany, R., Ahmed, A., Shalaby, N., Al-Anadouli, B. (2017). “Insulating refractory bricks from water treatment sludge and rice husk ash”. Refractories and Industrial Ceramics, 58: 136-144.
  • Fang, P., Tang, Z. J., Huang, J. H., Cen, C. P., Tang, Z. X., Chen, X. B. (2015). “Using sewage sludge as a denitration agent and secondary fuel in a cement plant: A case study”. Fuel Processing Technology, 137: 1–7.
  • Filibeli A., (1997). “Arıtma Çamurlarının Genel Özellikleri, İşleme ve Bertaraf Yöntemleri”. DEÜ Mühendislik Fakültesi Dergisi, 19, İzmir.
  • Fytili, D., Zabaniotou, A. (2008). “Unitilization of sewage sludge in EU application of old and new methods – A review”. Renewable and sustainable energy reviews, Science Direct, 12: 116-140.
  • Gadsboll, R. O., Thomsen, J., Bang-Moller, C., Ahrenfeldt, J., Henriksen, U. B. (2017). “Solid oxide fuel cells powered by biomass gasification for high efficiency power generation”. Energy, 131: 198–206.
  • Godfree, A. (2003). “Health constraints on the agricultural recycling of wastewater sludges”. The Handbook of Water and Wastewater Microbiology, 281: 98.
  • Gonzalez-Corrochano, B., Alonso-Azcarate, J., Rodriguez, L., Lorenzo, A. P., Torio, M. F., Ramos, J. J. T., Corvinos, M. D., Muro, C. (2017). “Effect heating dwell time has on the retention of heavy metals in the structure of lightweight aggregates manufactured from wastes”. Environmental Technology, 39: 2511-2523.
  • Göçmez, S., (2006). “Menemen Ovası Topraklarında İzsu Kentsel arıtma Çamuru Uygulamalarının Mikrobiyal Aktivite ve Biyomas ile Bazı Fiziksel ve Kimyasal Toprak Özellikleri Üzerine Etkisi”. Yayınlanmamış Doktora Tezi, Ege Üniversitesi. İzmir-Türkiye.
  • Hall, J.E., (1995). “Sewage sludge production, treatment and disposal in the European Union”. Water and Environment Journal, 9(4): 335–343.
  • Hasanbeigi, A., Lu, H., Williams, C., Price, L., (2012). “International best practices for pre-processing and co processing municipal solid waste and sewage sludge in the cement industry”. Ernest Orlando Lawrence Berkeley National Laboratory, 3.
  • Kaya, A. (2012). “An inventory study for municipal sludge production in aegean region”. Dokuz Eylül University, Graduate School of Natural and Applied Sciences Natural and Applied Sciences, 10-13.
  • Kaantee, U., Zevenhoven, R., Baxkman, R., Hupa, M. (2004). “Cement manufacturing using alternative fuels and the advantages of process modelling”. Renewable and Sustainable Energy Reviews, 85, 293-301.
  • Kelessidis, A., Stasinakis, A. S. (2012). “Comparative study of the methods used for treatment and final disposal of sewage sludge in European Countries”. Waste management, 32(6): 1186-1195.
  • Kempkens, W. (1993) “Alkohol and biogas aus abwaser”. Bild der wissenschaft, (12)83: 34.
  • Kumar, V., Chopra, A. K., Kumar, A. (2017). “A review on sewage sludge (Biosolids) a resource for sustainable agriculture”. Archives of Agriculture and Environmental Science, 2(4): 340-347.
  • Lam, C. M., Hsu, S. C., Alvarado, V., Li, W. M. (2020). “Integrated life-cycle data envelopment analysis for techno- environmental performance evaluation on sludge to energy systems”. Applied Energy, 266, Article 114867.
  • Lasaridi, K. E., Manios, T., Stamatiadis, S., Chroni, C., Kyriacou, A. (2018). “The evaluation of hazards to man and the environment during the composting of sewage sludge”. Sustainability, 10, Article 2618.
  • Ledakowicz, S., Stolarek, P., Malinowski, A., Lepez, O. (2019). “Thermochemical treatment of sewage sludge by integration of drying and pyrolysis/autogasification”. Renewable and Sustainable Energy Reviews, 104: 319–327.
  • Lin, Y. M., Zhou, S. Q., Li, F. Z., Lin, Y. X. (2012). “Utilization of municipal sewage sludge as additives for the production of eco-cement”. Journal of Hazardous Materials, 213-214: 457- 465.
  • Li-ping, X., Tao, L., Jian-dong, G., Xue-ning, F., Xia, W., Yuan-guang, J., (2015). “Effect of moisture content in sewage sludge on air gasification”. J Fuel Chemical Technology, 38(5), 615-620.
  • Lu, S.,Yang L., Zhou F., Wang F., Yan J., Li X., Chi Y., Cen K. (2013). “Atmospheric emission characterization of a novel sludge dryin gand cocombustion system”. Journal of Environmental Sciences, 25(10): 2088–2092.
  • Marrero, T., McAuley, B., Sutterlin, W., Morris, S., Manahan, S. (2003). “Fate of heavy metals and radioactive metals in gasification of sewage sludge”. Waste Manage, 24 (193): 8.
  • Milbrandt, A., Seiple T., Heimiller, D., Skaggs, R., Coleman, A. (2018). “Wet waste-to-energy resources in the United States”. Resources, Conservation & Recycling, 137: 32–47.
  • Minelgaite, A., Liobikiene, G. (2019). “Waste problem in European Union and its influence on waste management behaviours”. Science of The Total Environment, 667: 86-93.
  • Mountouris, A., Voutsas, E., Tassios, D., (2006). “Solid waste plasma gasification: equilibrium model development and exergy analysis”. Energy Conversion and Management, 47: 1723–1737.
  • Mountouris, A., Voutsas, E., Tassios, D., (2008). “Plasma gasification of sewage sludge: process development and energy optimization”. Energy Conversion and Management, 49: 2264–2271.
  • Murray, A., Price, L. (2008). “Use of alternatice fuels in cement manufacture: Analysis of fuel characteristics and feasibility for use in Chinese cement sector”. Ernest Orlando Lawrence
  • Berkeley National Laboratory, 5. Nipattummakul, N., Ahmed, I., Kerdsuwan, S., Gupta, A., (2010). “Hydrogen and syngas production from sewage sludge via steam gasification”. International Journal of Hydrogen Energy, 35: 11738-11745.
  • Orhon, D. (1991). “Ön Arıtmanın Projelendirilmesi. Endüstriyel Atıksuların Ön arıtılması”. Teknoloji İletimi Semineri, 131-173.
  • Otero, M., Rozada, F., Calvo, L.F., Garcia, A.I., Moran A., (2003) “Elimination of organic water pollutants using adsorbents obtained from sewage sludge”. Water Sci Technology, 57: 55-65.
  • Öztürk, İ. (2017). “Atıksu Mühendisliği”. İstanbul: İSKİ Genel Müdürlüğü
  • Petersen, I., Werther, J., (2005). “Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed”. Chemical Engineering and Processing, 44: 717– 736.
  • Pietzsch, N., Ribeiro, J.L.D., De Medeiros, J.F. (2017). “Benefits, challenges and critical factors of success for Zero Waste: A systematic literature Review”. Waste Management, 67: 324- 353.
  • Punmatharith, T., Rachakornkij, M., Imyim, A., Wecharatana, M. (2010). “Co-processing of grinding sludge as alternative raw material in portland cement clinker production”. Journal of Applied Sciences, 10 (15): 1525-1535
  • Shayana, E., Zareb, V., Mirzaeea, I. (2018). “Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents”. Energy Conversion and Management, 159: 30-41.
  • Salan, T. (2014). “Atıksu arıtma çamurlarının Türkiye’deki durumu ve enerji üretiminde değerlendirilme olanakları”. 20. Uluslararası Enerji ve Çevre Fuarı ve Konferansı, 191.
  • Samolada, M. C., Zabaniotou, A. A. (2014). “Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece”. Waste Management, 34: 411-420.
  • Sanger, M., Werther, J., Ogada, T. (2001). “NOx and N2O Emission Characteristics from Fluidized Bed Combustion of Semi-Dried Municipal Sewage Sludge”. Energy Conversion and Management, 167-177.
  • Saygılı, G. (2019, Ekim). “Türkiye’de Arıtma Çamuru Yönetimi ve Toprakta Kullanım”. Arıtma Çamurlarının Toprakta Kullanımı Sempozyumu, Sakarya.
  • Soysal, C., (2008). “Dizel Motorlarında Biyodizel-Dizel Yakıtı Karışımlarının Kullanılmasının Motor Performansına Etkisinin Deneysel Olarak İncelenmesi”. Yayınlanmamış Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi. Trabzon, Türkiye.
  • Sponar, J. (2002). “Possibilities of using sludge from water treament plants and sewage disposal plants in silicate Technologies”. Ph.D.Thesis, Brno University, Czech Republic.
  • Syed-Hassan, S. S. A., Wang, Y., Hu S., Su, S., Xiang J. (2017). “Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations”. Renewable and Sustainable Energy Reviews, 80: 888-913.
  • T.C. Sanayi ve Teknoloji Bakanlığı, (2020). Sanayi Bölgeleri Genel Müdürlüğü Kayıtları, Ankara.
  • T.C. Sanayi ve Teknoloji Bakanlığı, (2022). “Çimento Sektör Raporu”. Erişim adresi: https://www.sanayi.gov.tr/plan-program-raporlar-veyayinlar/sektor-raporlari/mu0102011404 , Son Erişim Tarihi: 29.12.2022.
  • Tezcakar, M., Can, O., (2010, 4-5 Kasım). “Atıktan enerji eldesinde termal bertaraf teknolojileri ve atıksu arıtma çamurlarının susuzlaştırılması”. 2. Atık teknolojileri sempozyumu ve sergisi, 151- 155, İstanbul.
  • Theulen, J., Szabo, L. (2010). “CO2 benefical sewage sludge recovery by cement kilns”. 2nd European conference on sludge management. Türkiye İstatistik Kurumu (2017). “Belediye Atıksu İstatistikleri 2016”. Türkiye İstatistik Kurumu Haber Bülteni, Sayı: 24875.
  • Topaç, F. O., Uçaroğlu, S. (2020). “Atıksu Arıtma Çamurlarının Sürdürülebilir Kullanım Alternatifleri: ÖncelikliYaklaşımlar”. Avrupa Bilim ve Teknoloji Dergisi, 20: 728-739.
  • Tsiligiannis, A., Tsiliyannis, C. (2020). “Oil refinery sludge and renewable fuel blends as energy sources for the cement industry”. Renewable Energy, 157: 55-70.
  • Uzun, P., Bilgili, U., (2011). “Arıtma Çamurlarının Tarımda Kullanılma Olanakları”. Uludağ̆ Üniversitesi, Ziraat Fakültesi Dergisi, 25(2): 135-146.
  • Valderrama, C., Granados, R., Cortina, J. L. (2013). “Stabilisation of dewatered domestic sewage sludge by lime addition as raw material for the cement industry: Understanding process and reactor performance”. Chemical Engineering Journal, 232: 458–467.
  • Vesilind, P. A., Hartman, G. C., Skene, E. T. (1988). “Sludge management and disposal: for the practicing engineer. In Sludge management and disposal: for the practicing engineer”. Lewis Publishers.
  • Vigneswaran, S., Kandasamy, J. (2009). “Sludge Treatment Technologies”. Waste Water Treatment Technologies - Volume II: 99.
  • Yamak, T., (2006). “Türkiye’nin Alternatif Enerji Kaynakları Potansiyeli ve Ekonomik Analizleri”. Yayınlanmamış Yüksek Lisans Tezi, Marmara Üniversitesi. İstanbul- Türkiye.
  • Yaman, K., (2009). “Arıtma Tesisi Çamurunun Tarımsal Amaçlı Kullanımında AB-Türkiye Politikalarının Karşılaştırılması”. Yayınlanmamış Doktora Tezi, Ankara Üniversitesi. Ankara, Türkiye.
  • Yang, G., Zhang, G., & Wang, H. (2015). “Current state of sludge production, management, treatment and disposal in China”. Water research, 78, 60-73.
  • Werle, S., (2012). “Modeling of the reburning process using sewage sludge- derived syngas”. Waste Management, 32: 753–758.
  • Wether, J., Ogada, T., (1999). “Sewage sludge combustion”. Progress in energy and combustion science, 25: 55-116.
  • Wisniowska, E., Grobelak, A., Kokot, P., Kacprzak, M. (2019). “Sludge legislationcomparison between different countries”. In Industrial and Municipal Sludge, 201-224.
  • Zabaniotou, A., Theofilou, C. (2008). “Green energy at cement kiln in Cyprus — Use of sewage sludge as a conventional fuel substitute”. Renew. Sustain. Energy Rev., 12: 531-541.
  • Zhang, L., Xu, C. C., Champagne, P., Mabee, W. (2014). “Overview of current biological and thermochemical treatment Technologies for sustainable sludge management”. Waste Management&Research, 32(7): 586-600