Maternal Beslenmenin Yavrular Üzerine Etkileri: Fetal Programlama ve Epigenetik Mekanizmalar

Maternal beslenme birçok bulaşıcı olmayan kronik hastalığın gelişiminde belirleyici bir rol oynamaktadır. Gebelik boyuncamaternal beslenme durumu programlanmada değişikliklere neden olup yetişkin dönem hastalıklarının gelişimine katkıdabulunabilir. Plasenta yetmezliği, glukokortikoidlere maruz kalma, beslenme yetersizlikleri ya da fazlalıkları ve stres gibiçeşitli perinatal sorunlar ile birlikte maternal intestinal mikrobiyom fetusun/yavrunun gelişimini değiştirerek kronikbulaşıcı olmayan hastalıkların oluşmasında yatkınlığa yol açabilir. Aynı zamanda gebelik sürecince yapılan beslenmemüdahaleleri, programlama sürecinin tersine çevrilerek bulaşıcı olmayan hastalıkların önlenmesini amaçlayan yenistratejilerin oluşturabilmesi için çok değerlidir. Fetal gelişim sırasında gen ekspresyonu epigenetik mekanizmalardanetkilenebilir. Özellikle deoksiribonükleik asit metilasyonunda rol alan genlerin epigenetik modifikasyonları, histonmodifikasyonları ve mikroRNA’lar hayatın sonraki dönemlerinde metabolik hastalıkların gelişimine katkıda bulunabilir.Bu derlemede epidemiyolojik çalışmalar ve hayvan modellerinden elde edilen veriler ışığında maternal beslenmenin fetalprogramlama üzerine etkilerinin altında yatan mekanizmalardan biri olan epigenetik mekanizmalar ele alınmıştır.

Effects of Maternal Nutrition on Offspring: Fetal Programming and Epigenetic Mechanisms

Maternal nutrition plays a decisive role in the development of many non-communicable diseases. Maternal nutritional status during pregnancy can contribute and program the development of adult diseases. Along with various perinatal problems such as placental insufficiency, glucocorticoid exposure, nutritional deficiencies or excesses, and stress and the maternal intestinal microbiome may alter the development of the fetus/offspring, leading to a predisposition to the development of chronic non-communicable diseases. At the same time, nutritional interventions during pregnancy are very valuable for reversing the programming process and creating new strategies aimed at preventing non-communicable diseases. Gene expression can be affected by epigenetic mechanisms during fetal development. Epigenetic modifications of genes involved in deoxyribonucleic acid methylation, histone modifications and microRNAs may contribute to metabolic diseases later in life. In this review, epigenetic mechanisms, one of the mechanisms underlying the effects of maternal nutrition on fetal programming,were discussed in the light of data obtained from epidemiological studies and animal models.

___

  • 1. Tayhan Kartal Y, Helvacı G, Yabancı Ayhan N. Maternal beslenme ve ilerleyen yaşamda obezite. GÜSBD. 2020;9(1):36-8.
  • 2. Barker DJ. In utero programming of chronic disease. Clin Sci. 1998;95(2):115-14.
  • 3. Zhu Z, Cao F, Li X. Epigenetic programming and fetal metabolic programming. Front Endocrinol (Lausanne). 2019;10:764.
  • 4. Parlee SD, MacDougald OA. Maternal nutrition and risk of obesity in offspring: The Trojan horse of developmental plasticity. Biochim Biophys Acta. 2014;1842(3):495-11.
  • 5. Ramírez-Alarcón K, Sánchez-Agurto A, Lamperti L, Martorell M. Epigenetics, maternal diet and metabolic programming. Open Biol J. 2019;7(1):45-6.
  • 6. Hsu CN, Tain YL. The good, the bad, and the ugly of pregnancy nutrients and developmental programming of adult disease. Nutrients. 2019;11(4):894.
  • 7. Şanlı E, Kabaran S. Maternal obesity, maternal overnutrition and fetal programming: Effects of epigenetic mechanisms on the development of metabolic disorders. Curr Genomics. 2019;20(6):419-9.
  • 8. Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: An overview. Reprod Toxicol. 2005;20(3):345-52.
  • 9. Stanner SA, Yudkin JS. Fetal programming and the Leningrad Siege study. Twin Res. 2001;4(5):287-6.
  • 10. Kwon EJ, Kim YJ. What is fetal programming? A lifetime health is under the control of in utero health. Obst Gynecol Sci. 2017;60(6):506-13.
  • 11. Wellsnw JC. The thrifty phenotype hypothesis: Thrifty offspring or thrifty mother? J theor Biol. 2003;221:143- 18.
  • 12. Desai M, Ross MG. Maternal-infant nutrition and development programming of offspring appetite and obesity. Nutr Rev. 2020;78(Supplement 2):25-6.
  • 13. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517(7534):302- 8.
  • 14. Tan BL, Norhaizan ME, Liew W-P-P. Nutrients and oxidative stress: Friend or foe? Oxid Med Cell Longev. 2018;1-24.
  • 15. Neri C, Edlow AG. Effects of maternal obesity on fetal programming: Molecular approaches. Cold Spring Harb Perspect Med. 2015;6(2):a026591.
  • 16. Şurgun E. Maternal beslenmenin epigenetik mekanizmalar üzerinden infant sağlığına etkileri. BÜSBİD. 2019;1(1):1-17.
  • 17. Li Y. Epigenetic mechanisms link maternal diets and gut microbiome to obesity in the offspring. Front Genet. 2018;9:342.
  • 18. Stevenson K, Lillycrop KA, Silver MJ. Fetal programming and epigenetics. Curr Opin Endocr Metab Res. 2020;13:1- 6.
  • 19. Lillycrop K, Burdge G. Maternal diet as a modifier of offspring epigenetics. J Dev Orig Health Dis. 2015;6(2):88- 7.
  • 20. Lee HS. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients. 2015;7(11):9492-15.
  • 21. Chango A, Pogribny IP. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients. 2015;7(4):2748-22.
  • 22. Goyal D, Limesand SW, Goyal R. Epigenetic responses and the developmental origins of health and disease. J Endocrinol. 2019;242(1):T105-T19.
  • 23. Akyol Mutlu A. Maternal beslenme, tip 2 diyabet ve epigenetik. Bes Diy Derg. 2016;44(1):62-7.
  • 24. Gawlinska K, Gawlinski D, Filip M, Przegalinski E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr Rev. 2020;00(0):1- 17.
  • 25. Strakovsky RS, Zhang X, Zhou D, Pan Y-X. The regulation of hepatic Pon1 by a maternal high-fat diet is gender specific and may occur through promoter histone modifications in neonatal rats. J Nutr Biochem. 2014;25(2):170-6.
  • 26. Panchenko PE, Voisin S, Jouin M, Jouneau L, Prézelin A, Lecoutre S, et al. Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice. Clin Epigenetics. 2016;8(1):1-18.
  • 27. Enquobahrie DA, Wander PL, Tadesse MG, Qiu C, Holzman C, Williams MA. Maternal pre-pregnancy body mass index and circulating microRNAs in pregnancy. Obes Res Clin Pract. 2017;11(4):464-10.
  • 28. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, et al. Developmental origins of disease and determinants of chromatin structure: Maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41(2):91-11.
  • 29. Benatti R, Melo A, Borges F, Ignacio-Souza L, Simino L, Milanski M, et al. Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br J Nutr. 2014;111(12):2112-10.
  • 30. Gali Ramamoorthy T, Allen TJ, Davies A, Harno E, Sefton C, Murgatroyd C, et al. Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats. Int J Obes (Lond). 2018;42(8):1431-13.
  • 31. Hernández-Saavedra D, Moody L, Xu GB, Chen H, Pan Y-X. Epigenetic regulation of metabolism and inflammation by calorie restriction. Adv Nutr. 2019;10(3):520-16.
  • 32. Ong TP, Ozanne SE. Developmental programming of type 2 diabetes: Early nutrition and epigenetic mechanisms. Curr Opin Clin Nutr Metab Care. 2015;18(4):354-6.
  • 33. Alejandro EU, Gregg B, Wallen T, Kumusoglu D, Meister D, Chen A, et al. Maternal diet–induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Inves. 2014;124(10):4395-15.
  • 34. Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci. 2010;17(3):227-11.
  • 35. Indrio F, Martini S, Francavilla R, Corvaglia L, Cristofori F, Mastrolia SA, et al. Epigenetic matters: The link between early nutrition, microbiome, and long-term health development. Front Pediatr. 2017;5:178.
  • 36. Li C, Guo S, Gao J, Guo Y, Du E, Lv Z, et al. Maternal highzinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J Nutr Biochem. 2015;26(2):173-10.
  • 37. Kabaran S, Besler HT. Do fatty acids affect fetal programming? J Health Popul Nutr. 2015;33:14.
  • 38. Lee H-S, Barraza-Villarreal A, Hernandez-Vargas H, Sly PD, Biessy C, Ramakrishnan U, et al. Modulation of DNA methylation states and infant immune system by dietary supplementation with ω-3 PUFA during pregnancy in an intervention study. Am J Clin Nutr. 2013;98(2):480-7.
  • 39. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJJ, Badger TM, et al. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 2013;154:4113-12.
  • 40. Zhang P, Torres K, Liu X, Liu C-g, E Pollock R. An overview of chromatin-regulating proteins in cells. Curr Protein Pept Sci. 2016;17(5):401-9.