Epigenetik Mekanizmaların Besinlerin Biyoaktif Bileşenleri ile İlişkisi

Deoksiribonükleik asitin (DNA) 1953 yılında keşfedilmesi ve 2003 yılında “İnsan Genom Projesi” nin tamamlanması ile birlikte genetik alanındaki ilerlemeler çok ciddi bir ivme kazanmıştır. Genetik alanındaki araştırmalarda multidisipliner çalışma yaklaşımları da yer bulmaya başlamıştır. Bu yaklaşımlardan birisi de beslenme ve genetiktir. Epigenetik, DNA baz diziliminde herhangi bir değişiklik olmadan, gen ifade profilinin farklılaşarak sonraki kuşaklara aktarılmasıdır. Epigenetik mekanizmalar genlerin ifadesini arttırıp azaltabildiği gibi genlerin sessizleştirilmesinde de etkilidir. DNA metilasyonu, histon modifikasyonları ve kodlanmayan ribonükleik asitler (RNA) başlıca epigenetik mekanizmalardır. Epigenetik modifikasyonlar erken embriyonik dönemdeki gelişim açısından da önemlidir. Son yıllarda yapılan çalışmalar besinlerde bulunan biyoaktif bileşenlerin epigenetik mekanizmalar üzerinde etkili olduğunu göstermiş ve bu alandaki araştırmalar için ilgi çekici olmuştur. Bu derlemede, kromatin yapı, temel epigenetik mekanizmalar açıklanmış ve epigenetik modifikasyonları etkileyen besin biyoaktif bileşenleri ile ilgili yapılmış çalışmalara yer verilmiştir.

Relationship between Epigenetic Mechanisms and Bioactive Components of Foods

With the exploration of DNA in 1953 and the end up of the “Human Genome Project” in 2003, advances in genetics have gained considerable progression. Multidisciplinary study approaches have started to take place in genetic researches. One of these approaches is nutrition and genetics. Epigenetics is the transfer of the gene expression profile to the next generation without any alteration in the DNA base sequence. Epigenetic mechanisms can induce or decrease the expression of genes and are also effective in silencing the genes. DNA methylation, histone modifications, and non-coding RNAs are basic epigenetic mechanisms. Epigenetic modifications are also important for early embryonic development. Recent studies have reported that nutrient components are effective on epigenetic mechanisms. Bioactive components in foods have been of interest for epigenetic research. In this review, chromatin structure, basic epigenetic mechanisms have been explained and studies on nutrient components affecting epigenetic modifications have been given.

___

  • Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709-13.
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-217.
  • Pal S, Tyler J. Epigenetics and aging. Sci Adv. 2016;2(7):e1600584.
  • Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166(4):82239.
  • Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, et al. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014;136:101-15.
  • Travers A, Muskhelishvili G. DNA structure and function. The FEBS journal. 2015;282(12):2279-95.
  • Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703-8.
  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol. 2002;319(5):1097-113.
  • Luger K, Richmond TJ. The histone tails of the nucleosome. Curr Opin Genet Dev. 1998;8(2):140-6.
  • Luger K, Dechassa ML, Tremethick DJ. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol. 2012;13(7):436.
  • Riaz S, Sui Z. Molecular cloning, transcriptome profiling, and characterization of histone genes in the dinoflagellate Alexandrium pacificum. J Microbiol Biotechnol. 2018;7:1185-98.
  • Kobayashi W, Kurumizaka H. Structural transition of the nucleosome during chromatin remodeling and transcription. Curr Opin Struct Biol. 2019;59:107-14.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6-21.
  • Bird A. Methylation talk between histones and DNA. Science. 2001;294(5549):2113-5.
  • Bird A. Methylation talk between histones and DNA. Science. 2001;294(5549):2113-5.
  • Bae D-J, Jun J, Chang HS, Park JS, Park C-S. Epigenetic Changes in Asthma: Role of DNA CpG Methylation. Tuberc Respir Dis.2019;82.
  • El Gendy K, Malcomson FC, Lara JG, Bradburn DM, Mathers JC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br J Nutr. 2018;120(9):961-76.
  • Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem. 2011;12(2):206-22.
  • Parrillo L, Spinelli R, Nicolò A, Longo M, Mirra P, Raciti GA, et al. Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. Int J Mol Sci. 2019;20(12):2983.
  • Kadayifci FZ, Zheng S, Pan Y-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int J Mol Sci. 2018;19(12):4055.
  • Mahmoud AM, Ali MM. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients. 2019;11(3):608.
  • Sheng J, Shi W, Guo H, Long W, Wang Y, Qi J, et al. The Inhibitory Effect of (−)-Epigallocatechin-3Gallate on Breast Cancer Progression via Reducing SCUBE2 Methylation and DNMT Activity. Molecules. 2019;24(16):2899.
  • Wang L-X, Shi Y-L, Zhang L-J, Wang K-R, Xiang L-P, Cai Z-Y, et al. Inhibitory Effects of (−)-Epigallocatechin-3gallate on Esophageal Cancer. Molecules. 2019;24(5):954.
  • Alvarez MC, Maso V, Torello CO, Ferro KP, Saad STO. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin Epigenetics. 2018;10(1):139.
  • Kedhari Sundaram M, Hussain A, Haque S, Raina R, Afroze N. Quercetin modifies 5′ CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J Cell Biochem. 2019.
  • Farhan M, Ullah MF, Faisal M, Farooqi AA, Sabitaliyevich UY, Biersack B, et al. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity. Medicines. 2019;6(1):24.
  • Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503-18.
  • Kumar U, Sharma U, Rathi G. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line. Tumor Biol. 2017;39(2):1010428317692258.
  • Toraño EG, Fernandez AF, Urdinguio RG, Fraga MF. Role of epigenetics in neural differentiation: implications for health and disease. Molecular mechanisms and physiology of disease: Springer; 2014. p. 63-79.
  • Sundaram MK, Unni S, Somvanshi P, Bhardwaj T, Mandal RK, Hussain A, et al. Genistein Modulates Signaling Pathways and Targets Several Epigenetic Markers in HeLa Cells. Genes. 2019;10(12):955.
  • Gao Y, Tollefsbol TO. Cancer chemoprotection through nutrient-mediated histone modifications. Curr Med Chem. 2015;22(17):2051.
  • Chatterjee B, Ghosh K, Kanade SR. Resveratrol modulates epigenetic regulators of promoter histone methylation and acetylation that restores BRCA1, p53, p21CIP1 in human breast cancer cell lines. BioFactors. 2019.
  • Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015;7(2):922-47.
  • Krakowsky RH, Tollefsbol TO. Impact of nutrition on non-coding RNA epigenetics in breast and gynecological cancer. Front Nutr. 2015;2:16.
  • Zhu Y, Huang Y, Liu M, Yan Q, Zhao W, Yang P, et al. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high-risk human papillomavirus subtypes. Exp Ther Med. 2019;17(3):1742-8.
  • Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011;6(2):93-108.
  • Reis BZ, Duarte GBS, Vargas-Mendez E, Ferreira LRP, Barbosa Jr F, Cercato C, et al. Brazil nut intake increases circulating miR-454-3p and miR-584-5p in obese women. Nutr Res. 2019;67:40-52.
  • Wengreen H, Munger R, Corcoran C, Zandi P, Hayden K, Fotuhi M, et al. Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J Nutr Health Aging. 2007;11(3):230.
  • Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest. 2008;118(3):868-78.
  • Yellayi S, Zakroczymski M, Selvaraj V, Valli V, Ghanta V, Helferich WG, et al. The phytoestrogen genistein suppresses cell-mediated immunity in mice. J Endocrinol . 2003;176(2):267-74.
Beslenme ve Diyet Dergisi-Cover
  • ISSN: 1300-3089
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1972
  • Yayıncı: Türkiye Diyestisyenler Derneği