CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES

CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES

Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. 

___

  • 1. A.P.G. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. J. Linn. Soc. Bot., 181, 1-20.
  • 2. Baas P., Wheeler E. & Chase M. (2000). Dicotyledonous wood anatomy and the APG system of angiosperm classification. J. Linn. Soc., Bot., 134, 3-17.
  • 3. Bello M. A., Bruneau A., Forest F. & Hawkins J. A. (2009). Elusive relationships within order Fabales: phylogenetic analyses using matK and rbcL sequence data. Syst. Bot., 34, 102-114.
  • 4. Bello M. A., Hawkins, J. A. & Rudall P. J. (2010). Floral ontogeny in Polygalaceae and its bearing on the homologies of keeled flowers in Fabales. ‎Int. J. Plant Sc.i, 171, 482-498.
  • 5. Bello M. A., Rudall P. J. & Hawkins J. A. (2012). Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales. Cladistics, 28, 393-421.
  • 6. Bruneau A., Mercure M., Lewis G. P. & Herendeen P. S. (2008). Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany, 86, 697-718.
  • 7. Cannon S. B., Mckain M. R., Harkess A., Nelson M.N., Dash S., Deyholos M. K., Peng, Y. Joyce, B. Stewart Jr C. N., Rolf M. & Kutchan, T. (2014). Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol., 32(1), 193-210.
  • 8. CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proc. Natl. Acad. Sci. U.S.A. 106(31), 12794-12797.Chodat, R. 1896. Polygalaceae novae vel parum cognitae. Bulletin de l'Herbier Boissier, 4, 233-237.
  • 9. Chodat R. (1896). Polygalaceae novae vel parum cognitae. Bulletin de l'Herbier Boissier, 4, 233-237.
  • 10. Cotton J. A. & Page R. D. (2002). Going nuclear: gene family evolution and vertebrate phylogeny reconciled. Proc. R. Soc. B., 269, 1555-61.
  • 11. Darriba D., Taboada G. L., Doallo R. & Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods, 9, 772-772.
  • 12. Dong W., Liu J., Yu J., Wang L. & Zhou S. (2012). Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PloS One, 7(4), e35071.
  • 13. Eriksen, B. (1993). Phylogeny of the Polygalaceae and its taxonomic implications. Plant Syst. Evol., 186, 33-55.
  • 14. Eriksen B. & Persson C. (2007). Polygalaceae, Families and genera of flowering plants. In: K. Kubitski, editors. Springer, Berlin.
  • 15. Felsenstein J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Syst. Biol., 27, 401-410.
  • 16. Forest F. (2004). Systematics of Fabales and Polygalaceae, with emphasis on Muraltia and the origin of the Cape flora. Reading: University of Reading.
  • 17. Forest F., Chase M. W., Persson C., Crane P. R. & Hawkins J. A. (2007). The role of biotic and abiotic factors in evolution of ant dispersal in the milkwort family (Polygalaceae). Evolution, 61, 1675-1694.
  • 18. Gribaldo S. & Philippe H. (2002). Ancient phylogenetic relationships. Theor. Popul. Biol., 61, 391-408.
  • 19. Huang C-H., Sun R., Hu Y., Zeng L., Zhang N., Cai L., Zhang Q., Koch M. A., Al-Shehbaz I., Edger P. P., Pires J. C., Tan D.-Y., Zhong Y. & Ma H. (2015). Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol., 33(2), 394–412.
  • 20. Jansen R. K., Kaittanis C., Lee S. B., Saski C., Tomkins J., Alverson A. J. & Daniell H. (2006). Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol. Biol., 6, 32.
  • 21. Jeffroy O., Brinkmann H., Delsuc F. & Philippe H. (2006). Phylogenomics: the beginning of incongruence? Trends Genet., 22, 225-231.
  • 22. Kajita T., Ohashi H., Tateishi Y., Bailey C. D. & Doyle J. J. (2001). rbcL and legume phylogeny, with particular reference to Phaseoleae, Millettieae, and allies. Syst. Bot., 26, 515-536.
  • 23. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S. & Duran C. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649.
  • 24. Kubitzki K. (2007). Quillajaceae. Flowering Plants· Eudicots. Springer Berlin Heidelberg.
  • 25. Lahaye R., Van der Bank M., Bogarin D., Warner J., Pupulin F., Gigot G., Maurin O., Duthoit S., Barraclough T.G. & Savolainen V. (2008). DNA barcoding the floras of biodiversity hotspots. PNAS USA, 105(8), 2923-2928.
  • 26. Lavin M., Herendeen P. S. & Wojciechowski M. F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst. Biol., 54, 575-594.
  • 27. Lewis G. P. (2005). Legumes of the World, Royal Botanic Gardens, Kew.
  • 28. Lewis G., Schrire B., Mackinder B., Rico L. & Clark R. (2013). A 2013 linear sequence of legume genera set in a phylogenetic context-a tool for collections management and taxon sampling. ‎S. Afr. J. Bot., 89, 76-84.
  • 29. L.P.W.G. (2017). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon, 66 (1), 44-77.
  • 30. Mabberley D. J. (1997). The plant-book: a portable dictionary of the vascular plants. Cambridge University Press, Cambridge.
  • 31. Moore M. J., Soltis P. S., Bell C. D., Burleigh G. & Soltis D. E. (2010). Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. PNAS USA, 107 (10), 4623-4628.
  • 32. Morgan C. C., Foster P. G., Webb A. E., Pisani D., Mcinerney J. O. & O'connell M. J. (2013). Heterogeneous models place the root of the placental mammal phylogeny. Mol. Biol. Evol., 30, 2145-56.
  • 33. Pereira A. G., Sterli J., Moreira F. R. & Schrago C. G. (2017). Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol., 113, 59-66.
  • 34. Persson C. (2001). Phylogenetic relationships in Polygalaceae based on plastid DNA sequences from the trnL-F region. Taxon, 763-779.
  • 35. Pisani D., Pett W., Dohrmann M., Feuda R., Rota-Stabelli O., Philippe H., Lartillot N. & Wörheide G. (2015). Genomic data do not support comb jellies as the sister group to all other animals. PNAS USA, 112, 15402-15407.
  • 36. Posada D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol., 25, 1253-1256.
  • 37. Raman G. & Park S. (2016). The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis, and phylogenetic relationships to other angiosperms. Front. Plant Sci., 7. 341.
  • 38. Rambaut A. & Grass N. C. (1997). Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. CABIOS, 13, 235-238.
  • 39. Rambaut A. (2014). FigTree 1.4.2 software. Institute of Evolutionary Biology, University of Edinburgh.
  • 40. Reddy S., Kimball R. T., Pandey A., Hosner P. A., Braun M. J., Hackett S. J., Han K. L., Harshman J., Huddleston C. J., Kingston S. & Marks B. D. (2017). Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol., 66 (4), 857-879.
  • 41. Roberts T. E., Sargis E. J. & Olson L. E. (2009). Networks, trees, and treeshrews: assessing support and identifying conflict with multiple loci and a problematic root. Syst. Biol., 58, 257-70.
  • 42. Rodríguez A., Burgon J. D., Lyra M., Irisarri I., Baurain D., Blaustein L., Göçmen B., Künzel S., Mable B. K., Nolte A. W. & Veith M. (2017). Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol. Phylogenet. Evol., 115, 16-26.
  • 43. Rokas A. & Carroll S. B. 2006. Bushes in the tree of life. PLoS Biology, 4, e352.
  • 44. Savolainen V., Chase M. W., Hoot S. B., Morton C. M., Soltis D. E., Bayer C., Fay M. F., De Bruijn A. Y., Sullivan S. & Qiu Y.-L. (2000). Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol., 49, 306-362.
  • 45. Schäferhoff B., Fleischmann A., Fischer E., Albach D. C., Borsch T., Heubl G. & Müller K. F. (2010). Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evol. Biol., 10, 352.
  • 46. Schneider J. V. (2007). Surianaceae. In Flowering Plants· Eudicots. Springer Berlin Heidelberg.
  • 47. Shaffer H. B., Mccartney-Melstad E., Near T. J., Mount G. G. & Spinks P. Q. (2017). Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol., 11, 7-15.
  • 48. Smith A. B. (1994). Rooting molecular trees: problems and strategies. Biol. J. Linn. Soc. Lond., 51, 279-292.
  • 49. Soltis D. E., Soltis P. S., Morgan D. R., Swensen S. M., Mullin B. C., Dowd J. M. & Martin P. G. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. PNAS USA, 92, 2647-2651.
  • 50. Soltis D. E., Soltis P. S., Mort M. E., Chase M. W., Savolainen V., Hoot S. B. & Morton C. M. (1998). Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. Syst. Biol., 47(1), 32-42.
  • 51. Spinks P. Q., Thomson R. C., Lovely G. A. & Shaffer H. B. (2009). Assessing what is needed to resolve a molecular phylogeny: simulations and empirical data from emydid turtles. BMC Evol. Biol., 9, 56.
  • 52. Sun M., Soltis D. E., Soltis P. S., Zhu X., Burleigh J. G. & Chen Z. (2015). Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol. Phylogenet. Evol., 83, 156-166.
  • 53. Swofford D. (2002). PAUP* version 4.0 b10. Phylogenetic analysis using parsimony (* and other methods). Sinauer, Sunderland, MA.
  • 54. Tarver J. E., Dos Reis M., Mirarab S., Moran R. J., Parker S., O'reilly J. E., King B. L., O'connell M. J., Asher R. J., Warnow T., Peterson K. J., Donoghue P. C. & Pisani D. (2016). The interrelationships of placental mammals and the limits of phylogenetic inference. GBE, 8, 330-44.
  • 55. Wang H., Moore M. J., Soltis P. S., Bell C. D., Brockington S. F., Alexandre R., Davis C. C., Latvis M., Manchester S. R. & Soltis D. E. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. PNAS USA, USA, 106, 3853-8.
  • 56. Watson L. & Dallwitz M. J. (1992 onwards). The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 20th July 2017.
  • 57. Westerkamp C. (1997). Keel blossoms: bee flowers with adaptations against bees. Flora: Morphologie, Geobotanik, Oekophysiologie, 192,125-32.
  • 58. Whitfield J. B. & Lockhart P. J. (2007). Deciphering ancient rapid radiations. Trends Ecol. Evol., 22, 258-65.
  • 59. Whitfield J. B. & Kjer K. M. (2008). Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annual Review of Entomology, 53, 449-72.
  • 60. Williams T. A., Heaps S. E., Cherlin S., Nye T. M., Boys R. J. & Embley T. M. (2015). New substitution models for rooting phylogenetic trees. Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140336.
  • 61. Wojciechowski M. F., Lavin M. & Sanderson M. J. (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot., 91, 1846-1862.
  • 62. Wortley A. H., Rudall P. J., Harris D. J. & Scotland R. W. (2005). How much data are needed to resolve a difficult phylogeny? A case study in Lamiales. Syst. Biol., 54, 697-709.
  • 63. Zeng L., Zhang Q., Sun R., Kong H., Zhang N. & Ma H. (2014). Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun., 5, 4956.
  • 64. Zeng L., Zhang N., Zhang Q., Endress P. K., Huang J. & Ma H. (2017). Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol., 214(3), 1338-1354.
  • 65. Zhang J., Chen M., Dong X., Lin R., Fan J. & Chen Z. (2015). Evaluation of four commonly used DNA barcoding loci for Chinese medicinal plants of the family Schisandraceae. PloS one, 10(5), p.e0125574.
  • 66. Zhang S. D., Jin J. J., Chen S. Y., Chase M. W., Soltis D. E., Li H. T., Yang J. B., Li D. Z. & Yi T. S. (2017). Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol., 2143, 1355-1367.
  • 67. Zou X. H., Zhang F. M., Zhang J. G., Zang L. L., Tang L., Wang J., Sang T. & Ge S. (2008). Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol., 9, R49.
Bartın Üniversitesi Uluslararası Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2017
  • Yayıncı: Bartın Üniversitesi