ADANA İLİ KARAİSALI İLÇESİ SEYHAN HAVZASI’NDA TAŞKIN ÖTELENMESİ YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE ANALİZİ

Bu çalışmada, Adana İli Seyhan Havzası’nda meydana gelen taşkına ait saatlik debi verileri kullanılarak taşkın ötelenme çalışması yapılmıştır. Akarsu üzerindeki E18A025 nolu Akım Gözlem İstasyonu'nda (AGİ) ve bu AGİ'nun 5,044 km mansabında yer alan D18A054 nolu AGİ'nda gözlenen birer saat aralıklı hidrograf verileri kullanılmıştır. İstasyonlarda ölçülen değerler ile hidrolik ve hidrolojik modellerin sonuçları karşılaştırılmıştır. Çalışmada hidrolojik modellerden Muskingum ve SCS; hidrolik modeller olarak da Kinematik Dalga, Muskingum-Cunge ve Dinamik yöntemleri uygulanmıştır. Ölçülen ve modellerden hesaplanan değerler arasındaki Hataların Ortalama Karekökü (HOK), Ortalama Mutlak Hata (OMH) ve Belirlilik Katsayısı (R2) değerleri hesaplanmış ve yöntemlerin performansları irdelenerek hangi yöntemin daha iyi sonuç verdiği değerlendirilmiştir. Çalışma sonunda, Muskingum Yönteminin en iyi tahmini verdiği, Muskingum-Cunge, SCS ve Kinematik Yöntemlerinin tahminlerinin de kabul edilebilecek düzeyde olduğu, Dinamik Yöntemin ise oldukça hatalı tahminler verdiği belirlenmiştir.

COMPARISON OF FLOOD ROUTING METHODS IN SEYHAN BASIN OF KARAISALI DISTRICT OF ADANA PROVINCE AND ANALYSIS

Flood routing is the calculation of the change of current (flow, velocity, etc.) values of the flood wave at any point along a reservoir or channel over time. In terms of flood control, flood offset calculations have many benefits. The most prominent of these is that when the flood sizes of the river are known, the flood hydrographs in a section down the kilometers of this section can be predicted for hours. In this way, the time required to save lives and property and to minimize flood damages is reduced and consequently flood damages are reduced. In this study, flood routing study was performed by using hourly flow data of flood occurred in in Seyhan Basin of Adana Province. One-hour intermittent hydrograph data were used at the E18A025 Stream Observation Station (SOS) on the river and at the D18A054 SOS at 5,044 km downstream.  While the models were installed, excel program was used in all and calculations and graphics were created in excel program. Measured values were compared with hydrological and hydraulic models. The slope of the stations and the distance between the two stations used in the flood routing methods were utilized from the DSI's online web page. The measured values ​​of these stations and the results of hydrological and hydraulic models were compared. During this study, Muskingum and SCS as hydrological models and Kinematic Wave, Muskingum-Cunge and Dynamic methods as hydraulicmodels have been applied. While performing this comparison, the values ​​of Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Determination Coefficient (R2) values ​​were calculated and the performance of the methods were evaluated to determine which method yields the best results.  Since the MAE and RMSE error values of Muskingum Method are small and R2 value is large, it is seen that this method is the best method in the investigated basin. Since the error values of Muskingum-Cunge, SCS and Kinematic Methods are acceptable and the coefficients of determination are quite high, it can be said that these methods also give good results. The results of the Dynamic Method were unacceptably unsuccessful due to both high error and low certainty coefficients.  As a result of the study, it has been determined that Muskingum Method gives the best estimation, Muskingum-Cunge, SCS and Kinematic Methods predictions are acceptable, and and Dynamic Method give inaccurate estimates. Only the input and output hydrograph data are sufficient to establish the Muskingum Method. Kinematic, Muskingum Cunge and Dynamic Methods for the establishment of the base slope, roughness coefficient, SOS sections, such as the need for a lot of data, in terms of reaching the correct result, Muskingum method is considered to be preferred in the flood routing studies.

___

  • 1. Afzali S. H. (2016). Variable-Parameter Muskingum Model, Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol.40 (1), pp. 59-68.
  • 2. Akbari G. & Firoozi B. (2010). Implicit and Explicit Numerical Solution of Saint-Venant Equations for Simulating Flood Wave in Natural Rivers, 5th National Congress on Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
  • 3. Atalay O. (2008). Taşkın Hidrografının Elde Edilmesiyle İlgili Yöntemlerin Karşılaştırılması, Yüksek Lisans Tezi, KÜ Fen Bilimler Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Kocaeli.
  • 4. Barati R., Akbari G. H. & Rahimi S. (2013). Flood Routing of an Unmanaged River Basin Using Muskingum–Cunge Model; Field Application and Numerical Experiments, Caspian Journal of Applied Sciences Research, Vol.2(6), pp. 08-20.
  • 5. Barry D. A. & Bajracharya, K. (1995). On The Muskingum-Cunge Flood Routing Method, Environment International, Vol. 21(5), pp. 485-490.
  • 6. Bayazıt M. (1995). Hidroloji, İ.T.Ü. İnşaat Fakültesi Matbaası.
  • 7. Bayazıt M., Avcı İ. & Şen Z. (1997). Hidroloji Uygulamaları, İ.T.Ü. İnşaat Fakültesi Matbaası.
  • 8. Bayazıt M. & Önöz B. (2008). Taşkın ve Kuraklık Hidrolojisi, Nobel Akademik Yayıncılık, Ankara.
  • 9. Chatila J. G. (1992). Application and Comparison of Dynamic Routing Models For Unsteady Flow in Simple and Compound Channels, Master Thesis, University of Ottawa, Canada.
  • 10. Chaudhry H. M. (2008). Open-Channel Flow Second Edition, Springer Science Business Media, LLC, 324.S, USA.
  • 11. Cheng J. Y. (2011). Modification of Kinematic Wave Cascading Model for Low Impact Watershed Development, Doctor of Philosophy Dissertation, University of Colorado, Denver.
  • 12. Choi C. C. (2013). Coupled Hydrologic And Hydraulic Models And Applications, Master Theses, The University of Iowa, Iowa.
  • 13. Chow V. T. (1959). Open Channel Hydraulics, McGraw-Hill International Book Company, Inc, New York.
  • 14. Chow V. T., Maidment D. R. & Mays L. W. (1988). Applied Hydrology, McGraw-Hill, Inc, USA.
  • 15. Çimen M. (1995). Difüzyon Yöntemi ile Akarsu Yatağındaki Taşkınların Ötelenmesi, Yüksek Lisans Tezi, SDÜ Fen Bilimleri Enstitüsü, Isparta.
  • 16. Elbashir S. T. (2011). Flood Routing in Natural Channels Using Muskingum Methods, Master Theses, Dublin Institute of Technology.
  • 17. Fread D. L. & Hsu K. S. (1993). ASCE National Hydraulic Engineering Conference, San Francisco, CA.
  • 18. Gökoğlu F. (2000). Akarsularda Taşkın Dalgalarının Sayısal Analizi, Yüksek Lisans Tezi, YTÜ Fen Bilimler Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul.
  • 19. Haktanir T. & Özmen H. (1997). Comparison of Hydraulic and Hydrologic Routing on Three Long Reservoirs, Journal of Hydraulic Engineering, Vol.123 (2), pp.153-156.
  • 20. Hec-1 (1990). Flood Hydrograf Package, User’s Manual, Hydrologic Engineering Center, U. S. Army Crops of Engineers.
  • 21. Jayyousi F. E. (1994). Evaluation of Flood Routing Techniques for Incremental Damage Assessment, Doctor of Philosophy Dissertation, Utah State University, Utah.
  • 22. Karahan H. & Gürarslan G. (2012). Kinematik Dalga Yaklaşımı Kullanılarak Taşkın Öteleme Problemlerinin Modellenmesi: Sütçüler Örneği, VII. Ulusal Hidroloji Kongresi.
  • 23. Kaya B. & Ülke A. (2012). Kinematik Dalga Modelinin DQM ile Çözümü ve Sütçüler Taşkını Örneği, Teknik Dergi, Yazı 374: 5869- 5884.
  • 24. Kaya B., Ulke A. & Kazezyılmaz-Alhan, C. (2012). Differential Quadrature Method in Open Channel Flows: Aksu River. J. Hydrol. Eng., 17: 715 - 723.
  • 25. Keskin M. E. & Ağıralioğlu N. (1997). A Simplified Dynamic Model for Flood Routing in Rectangular Channels, Journal of Hydrology, Vol. 202, pp. 302–314.
  • 26. Knapp H. V., Durgunoglu A. & Ortel T. W. (1991). A Review of Rainfall-Runoff Modeling for Stormwater Management, U.S. Geological Survey, Hydrology Division, Illinois.
  • 27. Kundzewicz Z. W. & Strupczewski W. G. (1982). Approximate Translation in the Muskingum Model, Hydrological Sciences Journal, Vol.27 (1), pp. 19-17.
  • 28. Lee K. T. & Huang P. C. (2012). Evaluating the Adequateness of Kinematic-Wave Routing for Flood Forecasting in Midstream Channel Reaches of Taiwan, Journal of Hydroinformatics, 14.4, pp: 1075-1088.
  • 29. Maidment D. R., (1993). Handbook of Hydrology, McGraw-Hill, Inc. P10.1.
  • 30. Ogunlela A. O. & Kasali M. Y. (2014). Kinematic Flood Routing of Asa River, International Journal of Engineering and Technical Research, Vol. 2 (3), pp.13– 17.
  • 31. Okkan U. & Gedik N. (2017). Doğrusal Olmayan Bir Taşkın Öteleme Modelinin Diferansiyel Gelişim Algoritması ile Kalibrasyonu, Karaelmas Fen ve Mühendislik Dergisi, 7(1),114-121
  • 32. Özmen H. (1999). Baraj Gölünden Taşkın Öteleme Modelleri, Doktora Tezi, ÇÜ Fen Bilimler Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Adana.
  • 33. Ponce V. M., Lohani, A. K. & Scheyhing C. (1996). Analytical Verification of Muskingum-Cunge Routing, Journal of Hydrology, Vol. 174(3-4), pp. 235-241.
  • 34. Sarıgöl M. (2018). Taşkın Ötelenmesinde Kullanılan Bazı Hidrolojik ve Hidrolik Yöntemlerinin Performanslarının Karşılaştırılması, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yayınlanmamış Doktora Tezi, Trabzon.
  • 35. Shultz M. J. (1992). Comparison of Flood Routing Methods for Rapidly Rising Hydrograph Routed Through a very Wide Channel, Master Thesis, The University of Texas, Arlington.
  • 36. Soentoro E. A. (1991). Comparision of Flood Routing Methods. Master Theses, University of British Columbia, Vancouver, Canada.
  • 37. Soleymani M. & Delphi M. (2012). Comparison of Flood Routing Models (Case Study: Maroon River, Iran), World Applied Sciences Journal Vol. 16 (5), pp: 769-775.
  • 38. Tewold M. H. (2005). Flood Routing in Ungauged Catchments Using Muskingum Model, Master Theses, University of Kwa-Zulu-Nata, Pietermaritzburg.
  • 39. Tung Y. K. (1985). River Flood Routing By Nonlinear Muskingum Method, Journal of Hydraulic Engineering, 111 (12), 1447-1460.
  • 40. Ülke A. (2001). Taşkın Öteleme Metodları, Seminer I Notları, Isparta.
  • 41. Ülke A. (2003). Muskingum Metodu Kullanılarak Taşkın Ötelenmesi, Yüksek Lisans Tezi, SDÜ Fen Bilimler Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Isparta.
  • 42. Wang G. T., Yao C., Okoren C. & Chen S. (2006). 4-Point FDF of Muskingum Method Based on The Complete St Venant Equations, Journal of Hydrology, Vol.324 (1), pp.339-349.
  • 43. Xia R. (1992). Sensitivity of Flood Routing Models to Variations of Momentum Equation Coefficients and Terms, Doctor of Philosphy Dissertation, University of Illinois, Urbana.
Bartın Üniversitesi Uluslararası Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2017
  • Yayıncı: Bartın Üniversitesi
Sayıdaki Diğer Makaleler

THE RELATIONSHIP BETWEEN THE ANALYSIS OF AIRBORNE POLLEN AND METEOROLOGICAL PARAMETERS, THE CASE OF BARTIN

Hanife İRİS

MERSİN ORMAN İŞLETME MÜDÜRLÜĞÜNDE AKDENİZ ÇAM KABUK BÖCEĞİ ORTHOTOMICUS EROSUS (WOLLASTON, 1857)’UN POPÜLASYON YOĞUNLUĞUNUN FEROMON TUZAKLARI İLE BELİRLENMESİ

Korhan METERİS, Yafes YILDIZ

AGAR WELL DİFÜZYON YÖNTEMİNDE STANDARDİZASYON ÇALIŞMASI

Mehmet AYTAR, Erman ORYAŞIN, Gamze BAŞBÜLBÜL, Bülent BOZDOĞAN

KENTSEL DÖNÜŞÜM PROJELERİNE EKOLOJİK BOYUT KAZANDIRILMASINA İLİŞKİN GÖRÜŞLER

Meltem DEMİRTAŞ, Selma ÇELİKYAY

A PRELIMINARY STUDY ON EVALUATION OF ENVIRONMENTAL AWARENESS OF THE STUDENTS IN SCIENCE AND ARTS FACULTIES AT TRAKYA UNIVERSITY (EDIRNE)

Emprou EMINOUGLOU, Mustafa ÖZKAN, Belgin ELİPEK

ADANA İLİ KARAİSALI İLÇESİ SEYHAN HAVZASI’NDA TAŞKIN ÖTELENMESİ YÖNTEMLERİNİN KARŞILAŞTIRILMASI VE ANALİZİ

Metin SARIGÖL, Ömer YÜKSEK

BALA VE ELMADAĞ YÖRESİ KARAÇAM (PINUS NIGRA) ORMANLARINDA ZARAR YAPAN DIPRION PINI (L.) ÜZERİNE ARAŞTIRMALAR

Duygu YILDIRIM, Yafes YILDIZ

BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ

Ali DOĞRU

WHY IS CLOZAPINE MORE EFFECTIVE THAN OTHER ATYPICAL ANTIPSYCHOTICS? DENSITY FUNCTIONAL THEORY AND MOLECULAR DOCKING APPROACH

Süheyla ÜNAL, Mustafa KARAKAPLAN, Erdinç ÖZ, İsmet YILMAZ, Serdar ALTIN, Ali BAYRİ

HAVAN MÜHİMMATI TAPALARINDA EMNİYET MEKANİZMALARININ İNCELENMESİ

Serhad YILDIZ, Zühtü Onur PEHLİVANLI