Emprenyeli Sarıçam Ağaç Malzemeye Uygulanan Üstyüzey İşlemlerinin Isı İletkenliğine Etkisinin Belirlenmesi

Ağaç malzeme iç ve dış mekânda bir çok alanda yapı malzemesi olarak kullanılmaktadır. Bu çalışmanın amacı, yangın geciktirici özelliğe sahip olan; boraks, çinko klorür, borik asit ve amonyum sülfat ile 2 çeşit empreyne yöntemi (daldırma, basınç) uygulanarak emprenye edilen sarıçam ağaç malzeme üzerine farklı üst yüzey vernikleri (sentetik, poliüretan, selülozik,) ve boyaları (endüstriyel selülozik, sentetik, selülozik,) uygulanarak ısı iletkenliğine etkisini belirlemektir. Isı iletkenliği testi ASTM C 113-99 standardında belirtilen özelliklere göre uygulanmıştır. Sonuç olarak, kullanılan emprenye maddelerinin ısı iletkenliğini düşürdüğü görülmüştür. Isı iletkenliği katsayısı en düşük 0.117 (kcal /mh°C) olarak sarıçam kontrol örneklerinde bulunmuştur. Isı iletkenlik katsayısı en yüksek 0.143(kcal/mh°C) olarak basınç yöntemi uygulanarak borik asit emprenyeli sarıçam örneklerinden elde edilmiştir. 

The Determination of Effec of Finishing on The Thermal Conductivity of Impregnated Scotch Pine

Wood material has used as construction material in many interior and outdoor areas. The aim of this study; to specify effects of wood material (Scotch Pine) impregnated by borax, zinc chloride, boric acid and ammonium sulfate by applying and two type impregnation methods (dipping and pressure), finished with some varnishes (synthetic,polyurethane,cellulosic) and different paints (industrial cellulosic, synthetic, cellulosic) on thermal  conductivity. Thermal conductivity test was applied according to ASTM C 1113-99. As a results, observed that impregnation materials increased on thermal conductivity. The founded that the lowest thermal counductivity of 0.117 (Kcal / mh°C) from scotch pine control samples. In addition the highest value thermal conductivity of 0.143 (Kcal/mh°C) was aquired from scotch pine application finished and industrial painted impregnated by boric acid chemical applying pressure method.

___

  • ASTM-C 1113-99 (2004). Standard test method for thermal conductivity of refractories by hot wire (Platinum Resistance Thermometer Technique). ASTM International; West Conshohocken, USA.
  • ASTM-D 1413-76 (1976). Standard test method of testing wood preservatives by laboratory soil blocks Cultures, Annual Book of ASTM Standards, pp. 452–60, USA.
  • ASTM-D 1413-07e 1 (2007). Standard test method for wood preservatives by laboratory soil-block cultures, in Annual Book of ASTM Standards, ASTM, West Conshohocken, Pa, USA.
  • ASTM D-3023-98 (2003). Standard practice for determination of resistance of factory applied coatings on wood products of stain and reagents, USA.
  • Aytin, A., Korkut, S., Şahin, Kol H. (2016). Isıl işlem ağaç malzemede ısı yalıtım özelliğine etkisi, İleri Tekn. Bilimleri Dergisi,5(1) 174-180.
  • Boasiako, C. A., Boadu, B.K., (2017). Thermal conductivity, resistance and specific heat capacity of chemically-treated, widely-used timber for building-envelope, High Temperatures-High Pressures, Vol. 47(1), pp. 65–84.
  • DİSAN Paint and Chemistry (Disan Boya ve Kimya Sanayii Ticaret Limited Şti.) (2018). BOSB, Tem Yan Yol 1.Cad. .Sok. No:3 Tuzla / İstanbul.
  • George, N. J., Akpabio, G. T., Obianwu, V.I., Obot, I.B. (2010). Comparison of thermal ınsulation efficiency of some selected materials used as ceiling in building design, Journal of Applied Science Research, 2, 253–259.
  • Gu, H. M. (2001). Structure based, two-dimensional anisotropic, transient heat conduction model for wood, Doctoral dissertation. Virginia Polytec. Inst. and State Univ. , Blacksburg. 214 pp.
  • Gu, H. M., Hunt, J. F. (2007). Two-dimensional finite element heat transfer model of softwood. part III. effect of moisture content on thermal conductivity, Wood and Fiber Science, 39 (1) 159-166.
  • Gu, H.M., Zink-Sharp, A. (2005).Geometric model for softwood transverse thermal conductivity. Part 1. Wood and Fiber Science, 37 (4), 699-711.
  • Jankowska, A., Kozakıewıcz, P. (2014). Comparison of thermal properties of selected wood species intended to woodwork windows production, Forestry and Wood Technology, no: 85, 101-105
  • Lagüeka, S., Bison, P., Peron, F., Romagnoni, P. (2015). Thermal conductivity measurements on wood materials with transient plane source technique, Thermochimica Acta, Vol: 600, 45-51.
  • Laine, K., Rautkari, L., Hughes, M. (2013). The effect of process parameters on the hardness of surface densified Scots pine solid wood, European Journal of Wood & Wood Products, 71(1), 13-16.
  • Özcan, C., Kurt, Ş., Esen, R., Korkmaz, M. (2016). The determınated combustıon propertıes of fır wood ımpregnated wıth fıre-retardants, The Online J. of Sci. and Techn. July vol. 6, Issue 3.
  • Özdemir, F., Çot, A., Alma, H. (2018). Odun plastik kompozit malzemelerin termal ve ısı iletkenliği özelikleri üzerine sepiolit mineralinin etkisi, Türkiye Ormancılık Dergisi, 19 (2), 205-209.
  • Özdemir, F., Tutuş, A., Bal, C. B. (2013). Yüksek yoğunluklu lif levhanın ısı iletkenliği ve limit oksijen indeksi üzerine yanmayı geciktiricilerin etkisi, SDÜ Orman Fak. Dergisi, 14: 121-126.
  • Pelit, H., Korkmaz, M., Budakçı, M., Esen, R. (2017). The effects of densification and heat treatment on thermal conductivity of fir wood, The Onl. Journ. Of Science and Technology, vol 7, 3, 117-122.
  • Ragland, K. W., Aerts, D. J., Baker, A. J. (1991). Properties of wood for combustion analysis. Bioresource Technology, vol. 37(2), 161–168.
  • Sandberg, D., Haller, P., Navi, P. (2013). Thermo-hydro and thermo-hydro-mechanical wood processing - An opportunity for future environmentally friendly wood products. Wood Material Science & Engineering 8(1), 64-88.
  • Sanyal, S. N., Jain, V. K., Dubey, Y. M., Verma, P. C. (1991). A preliminary note on relationship between dielectric properties and thermal conductivity of wood. Journal of Indian Academy of Wood Science, 22 (2), 45-49.
  • Sefil, Y. (2010). Thermowood Yöntemiyle Isıl İşlem Uygulanmış Göknar Ve Kayın Odunlarının Fiziksel Ve Mekanik Özellikleri, Yüksek Lisans Tezi, KBÜ Fen Bilimleri Enst. Mobilya ve Dek. Anabilim Dalı, Karabük.
  • Simpson, W., Tenwolde, A. (1999). Physical properties and moisture relations of wood, Wood Handbook Gen. Tech. Rep. FPL-GTR-76, Forest Products Laboratory, 463 pp.
  • Şahin, K. H., Altun, S. (2009). Effect of some chemicals on thermal conductivity of ımpregnated laminated veneer lumbers bonded with poly vinyl acetate and melamine formaldehyde adhesives, Dryıng Technology, vol.27, pp.1010-1016.
  • Şahin, K. H. (2009). Thermal and dielectric properties of pine wood in the transverse direction, BioResources, 4 (4)1663-1669.
  • TS 344 (2012). Ahşap koruma-Genel kurallar, Türkiye Standartlar Enstitüsü, (TSE), Ankara.
  • TS 345 (2012). Ahşap emprenye maddeleri etkilerinin deney yöntemleri, Türkiye Standartlar Enstitüsü, (TSE), Ankara.
  • TS 2472 (1976). Odunda, fiziksel ve mekaniksel deneyler için birim hacim ağırlığı tayini, Türkiye Standartlar Enstitüsü, (TSE), Ankara.
  • Uysal, B., Kurt, Ş., Şahin, K. H., Özcan, C., Yıldırım, M. N. (2008). Thermal conductivity of poplar impregnated with some fire retardant, Teknoloji Derg. 11 (4), 239-251.
  • Yapıcı, F., Özçifçi, A., Esen, R., Kurt, S. (2011). The effect of grain angle and species on thermal conductivity of some selected wood species. Bioresources, 6 (3), 2757-2762.
Bartın Orman Fakültesi Dergisi-Cover
  • ISSN: 1302-0943
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1998
  • Yayıncı: Bartın Üniversitesi Orman Fakültesi