Biyokütle Kullanımının Enerji, Çevre, Sağlık ve Ekonomi Açısından Değerlendirilmesi

Dünyadaki nüfus artışına bağlı olarak ürün ve hizmetlerin sayısında ve kalitesinde de artışlar görülmektedir. Bu artışlarla birlikte enerjiye duyulan ihtiyaç da fazlalaşmıştır. Birçok ülkenin kısa ve uzun vadede enerji politikaları uygulaması ve farklı enerji kaynaklarına yatırım yapması akademik ve ticari alanlara da ivme kazandırmıştır. Enerji kaynağı olarak kullanılan kömür, petrol ve doğalgazın belirli alanlarda bulunması, nükleer, hidroelektrik ve yenilenebilir enerji kaynaklarına yönelimi arttırmıştır. Yenilenebilir enerji kaynakları içinde yer alan biyokütle, geniş bir ürün yelpazesine sahiptir. Odunsu materyaller ve endüstriyel atıkların yanında servis ömrünü tamamlamış ahşap bazlı ürün ve yapılar da önemli biyokütle kaynaklarıdır. Bu kaynakların pelet veya kömüre dönüştürülmesi veya doğrudan yakılması, çevreye ve insan sağlığına zararlı gazların salınımı sorununu ortaya çıkarmıştır. Enerji kaynağı olarak kullanılacak biyoyakıtın kimyasal içeriği ve işlem görmüş olması bu gazların çeşitliliği ve miktarında etkili olmaktadır. Bu çalışmada, biyoyakıtların enerji kaynağı olarak kullanılması ve ekonomiye katkıları incelenmiştir. Ayrıca, yakılması sonucu ortaya çıkan duman ve gazların çevre ve sağlık açısından değerlendirilmesi yapılarak bu alanda yapılacak çalışmalar için literatür oluşturulmuştur.

Evaluation of Biomass Use In terms of Energy, Environment, Health and Economy

There is also an increase in the number and quality of products and services depend on population growth in the world. These increases, naturally, have further increased the importance of energy. The implementations of energy policies in the short and long term of many countries and investment in different energy sources have accelerated academic and commercial areas. Coal, petroleum and natural gas having in certain areas have increased orientation to nuclear, hydroelectric and renewable energy sources. Biomass which is renewable energy sources has a wide range of products. Wooden materials and industrial wastes, wood-based products and constructions that have completed their service life are also important biomass resources. The conversion of these sources into pellets or coal mines or direct burning bring about the problem of the release of harmful gases to the environment and human health. The chemical content and processing of biofuel which is used as an energy source have affected diversity and quantity of these gases. In this study, the use of biofuels as a source of energy and its contribution to the economy was examined. In addition, contribution has been made to the literature in this area by evaluating the smoke and gases arising as a result of burning biofuels in terms of health and environment.

___

  • Amann M, Lutz M (2000). The revision of the air quality legislation in the European Union related to ground-level ozone. Journal of Hazardous Materials, 78, 41-62.
  • Anonim (2013). Turkish Wood Based Panels Association, Wood based panel production capacity reports, 2013, Istanbul, Turkey.
  • Antal MJ, Friedman HL, Rogers FE (1980). Kinetics of cellulose pyrolysis in nitrogen and steam. Combustion Science and Technology, 21(3-4), 141-152.
  • Antal MJ, Varhegyi G (1995). Cellulose pyrolysis kinetics: the current state of knowledge. Industrial & Engineering Chemistry Research, 34(3), 703-717.
  • Atkinson R (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34, 2063–2101.
  • Bardana EJ, Montanaro A (1997). Indoor air pollution and health. Marcel Dekker.127-153.
  • Beér JM (2000). Combustion technology developments in power generation in response to environmental challenges. Progress in Energy and Combustion Science, 26(4), 301-327.
  • Boffetta P, Sarccı R, Kogevinas M, Wilbourn J, Vainio H (1998). Occupational Carcinogens. Encyclopaedia of Occupational Health and Safety, 2, 4th Edition, ILO.
  • Boman BC, Forsberg AB, Järvholm BG (2003). Adverse health effects from ambient air pollution in relation to residential wood combustion in modern society. Scandinavian Journal of Work, Environment & Health, 29, 251–260.
  • Brown DM, Stone V, Findlay P, MacNee W, Donaldson K (2000). Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occupational and Environmental Medicine, 57, 685–691.
  • Christersson L (1999). Theoretical background to and practical utilization of short-rotation and energy forestry (No. SLU-ILOV-64).
  • De Jong W, Pirone A, Wojtowicz MA (2003). Pyrolysis of Miscanthus Giganteus and wood pellets: TG- FTIR analysis and reaction kinetics. Fuel, 82(9), 1139-1147.
  • Demirbaş A (2008). Importance of biomass energy sources for Turkey.Energy Policy, (36), 834–842.
  • Enzensberger W (1961). On the surface finishing of particleboard with resin impregnated paper layers. Holz Roh Werkst, 19: 394–398.
  • Enerji ve Tabii Kaynaklar Bakanlığı (2012). 2011 Yılı Genel Enerji Dengesi Tablosu, http://www.enerji.gov.tr (Erişim Tarihi: 16.03.2017).
  • Elektrik Üretim Anonim Şirketi (EÜAŞ) (2012). Elektrik Üretimi Sektör Raporu 2012, www.enerji.gov.tr/yayinlar_raporlar/Sektor_Raporu_EUAS_2012.pdf (Erişim Tarihi: 16.03.2017)
  • Feldmann J, Grümping R, Hirner AV (1994). Determination of volatile metal and metalloid compounds in gases from domestic waste deposits with GC/ICP-MS. Fresenius' Journal of Analytical Chemistry, 350(4-5),
  • Finlayson-Pitts BJ, Pitts JN (1997). Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276, 1045-1051.
  • Fitzpatrick EM, Jones JM, Pourkashanian M, Ross AB, Williams A, Bartle KD (2008). Mechanistic aspects of soot formation from the combustion of pine wood. Energy Fuel, 22, 3771-3778.
  • Gölçöl C, Dursun B, Alboyacı B, Sunan E (2009). Importance of biomass energy as alternative to other sources in Turkey, Energy Policy,(37), 424–431.
  • Gündüz G, Saraçoğlu N, Aydemir D (2016). Characterization and elemental analysis of wood pellets obtained from low-valued types of wood. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(15), 2211-2216.
  • Gürdil GAK, Baz YÖ, Demirel Ç, Demirel B (2015). Yakıt Peleti ve Briketi İçin Güncellenmiş Avrupa Birliği Standartları ve İlgili Parametreler. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(2), 147-156.
  • Gustafson P, Barregard L, Strandberg B, Sällsten G (2007). The impact of domestic wood burning on personal, indoor and outdoor levels of 1,3-butadiene, benzene, formaldehyde and acetaldehyde. Journal of Environmental Monitoring, 9(1), 23-32.
  • Gustafson P, Östman C, Sällsten G (2008). Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environmental Science & Technology, 42(14), 5074-5080.
  • Hill SJ, Hartley J, Ebdon L (1992). Determination of trace metals in volatile organic solvents using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 7(1), 23-28.
  • Höhr D, Steinfartz Y, Schins RPF, Knaapen AM, Martra G, Fubini B, Borm PJA (2002). The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat. International Journal of Hygiene and Environmental Health, 205, 239–244.
  • Ibrahim S, Polyzois D, Hassan SK (2000). Development of glass fiber reinforced plastic poles for transmission and distribution lines. Canadian Journal of Civil Engineering, 27(5), 850-858.
  • Jan Erik Mattsson . Swedish University of Agricultural Science, Department of Agricultural Engineering, PO Box 66, SE-23066, Alnarp, Sweden.
  • Johansson LS, Leckner B, Gustavsson L, Cooper D, Tullin C, Potter A (2004). Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmospheric environment, 38(25), 4183-4195.
  • Kamal M S, Razzak SA, Hossain MM (2016). Catalytic oxidation of volatile organic compounds (VOCs)– A review. Atmospheric Environment, 140, 117-134.
  • Kansal A (2009). Sources and reactivity of NMHCs and VOCs in the atmosphere: A review. Journal of Hazardous Materials, 166, 17–26.
  • Karayılmazlar S, Saraçoğlu N, Çabuk Y, Kurt R (2011). Biyokütlenin Türkiye’de Enerji Üretiminde Değerlendirilmesi. Bartın Orman Fakültesi Dergisi, 13(19), 63-75.
  • Kesselmeier J (1999). Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33, 23–88.
  • Klass D L (1998). Biomass for renewable energy, fuels, and chemicals. Academic Press. San Diego.
  • Koziński J A, Saade R (1998). Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study. Fuel, 77(4), 225-237.
  • Kozinski JA, Zheng G (1998). Patterns of Metals and PACs During Heating of Biologically Treated Deinking Byproducts. Combustion Science and Technology, 138(1-6): 363-380.
  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729.
  • Lakshmanan P, Delannoy L, Richard V, Methivier C, Potvin C, Louis C (2010). Total oxidation of propene over Au/xCeO2-Al2O3 catalysts: influence of the CeO2 loading and the activation treatment. Applied Catalysis B: Environmental, 96, 117-125.
  • Larson TV, Koenig JQ (1994). Wood smoke: emissions and noncancer respiratory effects. Annual Review Public Health, 15, 133–156.
  • Lavric E D, Konnov AA, De Ruyck J (2004). Dioxin levels in wood combustion—a review. Biomass and Bioenergy, 26(2), 115-145.
  • Lea-Langton AR, Baeza-Romero MT, Boman GV, Brooks B, Wilson AJM, Atika F, Bartle KD, Jones JM, Williams A (2015). A study of smoke formation from wood combustion. Fuel Processing Technology, 137, 327-332.
  • Li W, Wang J, Gong H (2009). Catalytic combustion of VOCs on non-noble metal catalysts. Catalytic Today, 148, 81-87.
  • Löndahl J, Massling A, Pagels J, Swietlicki E, Vaclavik E, Loft S (2007). Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhalation Toxicology, 19, 109–116.
  • Molnár P, Gustafson P, Johannesson S, Boman J, Barregard L, Sällsten G (2005). Domestic wood burning and PM2.5 trace elements: Personal exposures, indoor and outdoor levels. Atmospheric Environment, 39(14), 2643-2653.
  • Moretti EC (2002). Reduce VOC and HAP emissions. Chemical Engineering Progress, 98(6), 30-40.
  • Müller-Hagedorn M, Bockhorn H, Krebs L, Müller U (2003). A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis, 6, 231-249.
  • Obernberger I, Thek G (2004). Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, 27(6), 653-669.
  • Öğüt H (2007). Biyoyakıtlar, Ekonomik Sosyal Araştırmalar Dergisi, 1,130-133.
  • Ojala S, Pitkäaho S, Laitinen T, Koivikko NN, Brahmi R, Gaálová J, Matejova L, Kucherov A, Päivärinta S, Hirschmann C, Nevanperä T (2011). Catalysis in VOC abatement. Topics in Catalysis, 54(16-18), 1224-1256.
  • Olsen E, Nielsen F (2001). Predicting vapour pressures of organic compounds from their chemical structure for classification according to the VOCDirective and risk assessment in general. Molecules 6, 370-389.
  • Ostro B, Broadwin R, Green S, Feng WY, Lipsett M (2006). Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environ Health Perspect, 114, 29–33.
  • Otto D, Hudnell H, House D, Mİlhave L, Counts W (1992). Exposure of humans to a volatile organic mixture, behavioral assessment. Arch Environ Health, 47, 23-30.
  • Peng J, Wang S (2007). Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Applied Catalysis B: Environmental, 73, 282-291.
  • Pope III CA, Dockery DW (2006). Health effects of fine particulate air pollution: lines that connect. Journal of The Air & Waste Management Association, 56(6), 709-742.
  • Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
  • Ragland KW, Aerts DJ, Baker AJ (1991). Properties of wood for combustion analysis. Bioresource Technology, 37(2), 161-168.
  • Reddy AKN, Williams R H, Johansson TB (1996). Energy after Rio: prospects and challenges. New York (NY): United Nations Publications;
  • Reina J, Velo E, Puigjaner L (1998). Thermogravimetric study of the pyrolysis of waste wood. Thermochimica Acta, 320(1), 161-167.
  • Reisen F, Bhujel M, Leonard J (2014). Particle and volatile organic emissions from the combustion of a range of building and furnishing materials using a cone calorimeter. Fire Safety Journal, 69, 76-88.
  • Roberts AF (1970). A review of kinetics data for the pyrolysis of wood and related substances. Combustion and Flame, 14(2), 261-272.
  • Salthammer T, Klipp H, Peek RD, Marutzky R (1995). Formation of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) during the combustion of impregnated wood. Chemosphere, 30(11), 2051–2060.
  • Saraçoğlu N (2010).Küresel İklim Değişimi, Biyoenerji ve Enerji Ormancılığı, Efil Yayınevi, 298 s., Ankara.
  • Saraçoğlu N, Gunduz, G (2009). Wood pellets—tomorrow's fuel for Europe. Energy Sources, Part A, 31(19), 1708-1718.
  • Shang TX, Ren RQ, Zhu YM, Jin XJ (2015). Oxygen-and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance. Electrochimica Acta, 163, 32-40.
  • Sommerhuber PF, Wang T, Krause A (2016). Wood–plastic composites as potential applications of recycled plastics of electronic waste and recycled particleboard. Journal of Cleaner Production, 121, 176-185.
  • Stanmore BR (2004). The formation of dioxins in combustion systems. Combustion and Flame, 136(3), 398- 427.
  • Timothy VL, Jane QK (1993). A Summary of the Emissions Characterization and Noncancer Respiratory Effects of Wood Smoke. EPA-453/R-93-036. US EPA (United States Environmental Protection Agency).
  • Tsai W T (2016). Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea. Environments, 3(3), 23.
  • Türe S (2001). Biyokütle enerjisi. Tübitak Matbaası, Ankara.
  • Von Eckstaedt CDV, Grice K, Ioppolo-Armanios M, Kelly D, Gibberd M (2012). Compound specific carbon and hydrogen stable isotope analyses of volatile organic compounds in various emissions of combustion processes. Chemosphere, 89(11), 1407-1413.
  • Ültanır M Ö (1996). Türkiye’nin Biyokütle Enerji Stratejisi Ne Olmalıdır. Bilim ve Teknik, 342.
  • Wang L, Chen SS, Tsang DC, Poon CS, Shih K (2016). Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building Materials, 125,
  • White LP, Plaskett LG (1981). Biomass as Fuel. Academic Press, London
  • WHO 2000. Air quality guidelines for Europe. In: Theakston, F. (Ed.), European Series. World Health Organization, Copenhagen.
  • Williams A, Jones JM, Ma L, Pourkashanian M (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38(2): 113-137.
  • Williams PT, Horne PA (1996). Influence of temperature on the products from the flash pyrolysis of biomass. Fuel, 75, 1051-1059.
  • Wilson JM, Baeza-Romero MT, Jones JM, Pourkashanian M, Williams A, Lea-Langton AR, Ross B, Bartle KD (2013). Soot formation from the combustion of biomass pyrolysis products and a hydrocarbon fuel, n-decane: an aerosol time of flight mass spectrometer (ATOFMS) study. Energy & Fuels, 27(3), 1668- 1678.
  • Winter F, Wartha C, Hofbauer H (1999). NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresource Technology, 70(1), 39-49.
  • Yıldırım HT, Dayaniklioglu S, Candan Z (2013). Raw material procurement policies of Turkish wood panel industry. Proceeding of 56th Society of Wood Science Technology Internatıonal Convention.
  • Yorulmaz SY, Atimtay AT (2009). Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Processing Technology, 90(7), 939-946.