UV ile sertleşen hibrid kaplamalarla alüminyum levhaların yüzey özelliklerinin iyileştirilmesi

Alüminyum birçok üstün özelliklere sahip olmasına rağmen kolayca çizilme ve aşınma, çok çabuk korozyona uğrama, kir ve leke tutma gibi bazı dezavantajlara sahiptir. Alüminyum yüzeyine hibrid kaplama yapılarak aşınmaya, çizilmeye, korozyona, kir ve lekeye karşı dirençli hale getirmek aynı zamanda görsel ve dekoratif özellikler kazandırmak mümkündür. Bu çalışmada yüksek miktarda flor içeren yapılar ile silisyum içerikli yapılarla reaksiyona sokularak flor içerikli inorganik faz elde edildi. Hibrid yapının organik kısmı ise epoksi akrilat, hekzan diol diakrilat ve UV başlatıcıdan oluştu. Organik ve inorganik kısımların manyetik karıştırıcı yardımıyla homojen bir şekilde karıştırılmasıyla flor içeren hibrid kaplama formülasyonları yüzeye uygulandı. Farklı içeriklere sahip formülasyonlar UV ışınlarıyla sertleştirilerek yüzeylerin kaplama performansları incelendi. Alüminyum levha yüzeyleri UV ışınlarıyla sertleşebilen flor içerikli hibrid malzemeyle kaplanarak aşınmaya, sürtünmeye, çizilmeye, korozyona, kir ve lekelere karşı dirençli hale getirildi. Bununla beraber yüksek parlaklıkta görsel ve dekoratif özelliklere sahip bir yüzey elde edildi. 

Improvement of surface properties of aluminum sheets with UV curable hybrid coatings

Although aluminum has many superior properties, it has some disadvantages such as scratching and abrasion, very quick corrosion, dirt and stain retention. It is possible to make the aluminum surface resistant to abrasion, scratching, corrosion, dirt and stains by giving a hybrid coating at the same time to give visual and decorative features. In this study, fluorine containing inorganic phase was obtained by reacting high amounts of fluorine containing structures with silicon containing structures. The organic part of the hybrid structure consisted of epoxy acrylate, hexane diol diacrylate and UV initiator. Hybrid coating formulations containing fluorine were applied to the surface by mixing the organic and inorganic parts homogeneously with a magnetic stirrer. The formulations with different contents were hardened by UV rays and the coating performance of the surfaces was examined. Aluminum sheet surfaces were coated with fluoride-containing hybrid material which was hardened by UV rays and made resistant to abrasion, rubbing, scratching, corrosion, dirt and stains. However, a surface with high visibility and decorative features was obtained.

___

  • [1] Dursun, T. ve Soutis, C., Recent developments in advanced aircraft aluminium alloys, Materials and Design, 56, 862-871, (2014).
  • [2] Baburaja, K., Subbaiah, K.V. ve Kalluri, R., Hybrid materials of aluminium, Materials Today: Proceedings Part B, 3, 10, 4140-4145, (2016).
  • [3] Maung K.N., Yoshida, T., Liu, G., Lwin, C.M. ve Hashimoto, S., Assessment of secondary aluminum reserves of nations, Resources, Conservation and Recycling, 126, 34-41, (2017).
  • [4] Hofacker, S., Mechtel, M., Mager, M. ve Kraus, H., Sol-Gel: A new tool for coatings chemistry, Progress In Inorganic Coatings, 45, 2-3, 159-164, (2002).
  • [5] Livage, J., Sol-Gel processes, Current Opinion in Solid State and Materials Science, 2, 2, 129-275, (1997).
  • [6] Drobny, J.G., Blends and composites based on fluoropolymers, Macromol. Symp., 170, 1, 149-156, (2001).
  • [7] Anton, D., Surface fluorinated coatings, Advanced Materials 10, 15, 1197- 1205, (1998).
  • [8] Imae, T., Fluorinated polymers, Current Opinion in Colloid and Interface Science, 8, 3, 307-314, (2003).
  • [9] Bongiovanni, R., Malucelli, G., Sangermano, M. ve Priola, A., Properties of UV-curable coatings fluorinated acrylics structures, Progress in Organic Coatings 36, 1-2, 70-78, (1999).
  • [10] Du, Y., Damron, M., Tang, G., Zheng, H., Chu, C.J. ve Osborne, J., Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates, Progress in Organic Coatings, 41, 4, 226-232, (2001).
  • [11] Conde, A., Durán, A. ve Damborenea, J.J., Polymeric Sol–Gel coatings as protective layers of aluminium alloys, Progress in Organic Coatings, 46, 4, 288-296, (2003).
  • [12] Barbucci, A., Pedroni, E., Perillon, J.L. ve Cerisola, G., Organic coatings for pre-treated galvanized steel technology, Progress in Organic Coatings, 29, 1-4, 7-11, (1996).
  • [13] Malucelli, G., Gianni, A.D., Deflorian, F., Fedel, M. ve Bongiovanni, R., Preparation of ultraviolet-cured nanocomposite coatings for protecting against corrosion of metal substrates, Corrosion Science, 51, 8, 1762-1771, (2009).
  • [14] Zhong, X., Li, Q., Hu, J. ve Lu, Y., Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy, Corrosion Science, 50, 8, 2304-2309, (2008).
  • [15] Hougham, G.G., Cassidy, P.E., Johns, K. ve Davidson, T., Fluoropolymers 2, Kluwer Academic Publishers, New York, (2002)