Modern Fizikte Öğrencilerin ve Öğretmen Adaylarının Algılama ve Mantık Yürütme Biçimleri Üzerine Bir Çalışma

Bu çalışma fen alanlarında (fizik ve kimya) öğrenim gören öğretmen adaylarının, modern bilimlerin temel kavramları (enerji, madde, atom, ışık…) karşısında algılama ve mantık yürütme biçimlerini incelemek amacıyla yapılmıştır. Buradaki temel sorgulama geleceğin öğretmenlerinin bilimsel edinimleri ile yaşadığımız dünyayı nasıl algıladıkları ve tasarımladıklarıdır. Çalışmada özellikle mikromakro dünya, bilinen-bilinmeyen ve son olarak algı - kavram arası olası ilişkiler incelenmiştir. Araştırma Fransa ve Türkiye’de öğretmen adaylarının görüş ve düşünceleri ile şekillenmiş, ilköğretim, lise ve üniversite birinci sınıf öğrencilerin katkılarıyla tamamlanmıştır. Çalışmada veri toplama aracı olarak geniş katılımlı anketler ve görüşmeler kullanılmıştır. Araştırma sonucunda öğrenciler ve öğretmen adaylarının günümüz fen bilimlerinin temel kavramları çerçevesinde kullandıkları mantık yürütme ve algılama biçimlerinin, bilimsel bilginin yapılanması sırasında gelişen düşünce ve algılama biçimiyle uyumlu olmadığı belirlenmiştir. Bu uyumsuzluk bilimsel bilginin bireyde yapılanmasında ve ediniminde birtakım zorluklar ve engeller ortaya koymaktadır. Algısal ve bilişsel etkinlikleri yapılandırma ve bütünleştirme, öğrenmenin merkezinde olan bireyde eş zamanlı olarak varolan iki farklı mantık yürütme ve bilgi (bilimsel ve bilimsel olmayan) biçimi arasındaki olası uzaklığı azaltacaktır

The thesis analyses students’ and future science teachers’ modes of reasoning and perception of some key concepts in modern science (energy, matter, atoms, light...) Is this knowledge useful for building a vision of the real world for themselves and for their pupils? To examine the following questions, the relationship between the macroscopic world and the microscopic one, the known and the unknown one, and the possible passage from sensory to conceptual representations in particular, a sample of students-teachers in France and Turkey has been surveyed. The results of additional questionnaires and interviews of secondary school pupils and first-year university students have been included. The results show that the modes of reasoning and perception used by the students/teachers about the concepts of modern science were not compatible with the types of thought developed during the construction of the scientific knowledge. This incompatibility impeded or prevented the acquisition and construction of scientific knowledge. This makeshift assembly of both systems may help to bridge the gap between the two modes of reasoning and knowledge (scientific et non-scientific) which coexist in the intellectual structure of individuals

___

[1] Balian R. (2001). Physique fondamentale et énergétique : les multiples visages de l’énergie, conférence introductive de l’école d’été de Physique sur l’énergie, Caen –27 août 2001. http://e2phy.in2p3.fr/2001/balian.doc

[2] Bunge, M., (2000), Energy: Between physics and Metaphysics, Science and Education 9:457-461, Kluver Academic Publishers, Printed in the Netherland.

[3] Chalmers, A., (1991). La fabrication de la science, Editions la découverte, 1991, Paris.

[4] Chi, M. T. H., Slotta, J. D., de Leeuw, N. (1994). « From things to processes : A theory of conceptuel change for learning sciences concepts. » Learning et Instruction 4: 27-43.

[5] Driver, R. (1981). “Pupils’ alternative frameworks in science.” European Journal of Science Education 3(1): 93-101.

[6] Driver, R., Guesne, E. , Tiberghien, A. (1985). Children’s ideas and the learning of science. Children’s ideas in science. R. Driver, Guesne, E. , Tiberghien, A. Milton Keynes, Open University Press: 1-9.

[7] Ecole doctorale, Savoirs scientifiques: épistémologie, histoire des sciences, didactique des sciences, Université Paris 7. (http://www.sigu7.jussieu.fr/Diplomes/DEA/index.htm).

[8] Energie, un enseignement pluridisciplinaire, Rencontres pédagogies, n° :4, 1985, INRP.

[9] Fischler, H., Lichtfeldt, M. (1992). “Modern physics and students’ conceptions.” International Journal of Science Education 14(2): 181-190.

[10] Fischler, H., Lichtfeldt, M. (1992). Learning quantum mechanics. Research in physics learning: Theoretical issues and empirical studies. R. Duit, Goldberg, F. , Niedderer, H. . Kiel, IPN: 240-258.

[11] Gilbert, J. K., Watts, M. (1983). “Concepts, misconceptions and alternative conceptions: Changing perspectives in Science Education.” Studies in Science Education 10: 61-98.

[12] Harrison, A.G. & Treagust, D.F. (2001). “Conceptual change using multiple interpretive perspectives:Two case studies in secondary school chemistry”.Instructional Science 29: 45–85

[13] Jean-Marc, Levy-Leblond (2000). Impassceinces, Bayard édition. Seul (2003).

[14] Kossso Peter, Observabiliy and Observation in Physical Science, Kluwer Academic Publisher, 1989,Netherland.

[15] Kuhn, T. S. (2000). On learning physics. Science&Education. 9 :11-19. Kluwer Academic publishers. Printed in the Nedherland.

[16] La main à la pâte : www.inrp.fr/lamap

[17] Lemeignan, G. et Weil-Barais, A. (1993). Construire des concepts en Physique, Paris, Hachette. 60

18 Mashhadi, A. (1996). Students’ conceptions of quantum physics. Research in Science Education in Europe. G. Welford, Osborne, J. , Scott, P. London, The Falmer Press: 254-265.

[19] Petri, J., Niedderer, H. (1998). “A Learning pathway in high-school level quantum atomic physics.” International Journal of Science Education 20(8): 1075-1088.

[20] Posner, G. J., Strike, K. A. , Hewson, P. W. , Gertzog, W. A. (1982). "Accommodation of a scientific conception: Toward a theory of conceptual change." Science Education 66(2): 211-227.

[21] Saltiel, E. (1994). Un enseignement concret et attractif de la physique doit-elle être avant tout expérimentale, théorique, Didaskalia -supplémentaire au n°3.

[22] Sievers, K. H.,1999, Toward a direct realist account of observation, Science &education 8, Issue 4, pp. 387-393, Netherlands.

[23] Solomon, J. (1992)."Getting to know about Energy”. The falmer press. Taylor&Francis Group; London- Washington, D.C.

[24] Tibergien, A. et all. (2002). Des connaissances naïves au savoir scientifique, synthèse d’un colloque autour d’une action « école et sciences cognitives », UMR GRIC, CNRS-Université Lumière Lyon 2, version courte.

[25] Trumper, R. (1990). « Being constructive: An alternative approach to the teaching of the energy concept - part one. » International Journal of Science Education 12(4): 343-354.

[26] Trumper, R. (1991). « Being constructive: An alternative approach to the teaching of the energy concept - part two. » International Journal of Science Education 13(1): 1-10

[27] Vergnaud, G. (1990). La théorie des champs conceptuels, Recherches en Didactique des Mathématiques, Vol.10,n°23, pp.133-170, La pensée sauvage, Grenoble

[28] Viennot, L. (1979).Le raisonnent spontané en dynamique élémentaire. Paris, Herman.

[29] Viennot, L. (1986). Raisonner en physique, De Boeck &Larcier s.a., Paris, Bruxelles.

[30] Vygotski, Lev. (1934). La pensée et le langage, 3e édition de la traduction française (1998), la dispute, Paris, 1934-1937 (1er édition).

[31] Watts, M. (1983). « Some alternative views of energy. » Physics Education 18: 213-217.

[32] Weil-Barais, A. (1994). « Les apprentissages en sciences physiques », in Vergnaud, G (éd.), Apprentissage et didactique, où en est-on ?, Paris, Hachette, p. 95-126.

[33] White, R. T. (1994). "Conceptual and conceptional change." Learning and Instruction 4: 117-12

[34] Yurumezoglu, K. (2004). Une etude sur les modes de raisonnement des etudiants en physique actuelle, Formation et developpement du contenu conceptuel: du sensoriel au categoriel et des particules aux phénomenes, These de doctorat, Université Louis Pasteur, Strasbourg.