EKDZ Modelinin Çoklu Kırınım İçeren bir Senaryoya Uygulanması

Bu çalışmada, karasal yayıncılıkta kapsama alanı hesabında kullanılmak üzere ışın izleme tekniğine dayanan yayılım modelleri karşılaştırılmaktadır. Geometrik Kırınım Teorisi (GKT), Eğim Kırınımı ve Dışbükey Zarf Tekniğine dayalı Eğim Kırınımı (EKDZ) karşılaştırılmaktadır. EKDZ modeli hesaplama süresi ve bağıl yol kaybını hesaplamadaki kesinliği açısından optimum bir modeldir. Bu çalışmada 1800 MHz işlem frekansı için verici yüksekliğinin, alıcı üzerindeki bağıl yol kaybına etkisi tartışılmaktadır. Verici yüksekliği azaldıkça binalar daha fazla birbirinin geçiş bölgesine gireceğinden bağıl yol kaybı azalmaktadır. Bu durumda alıcıya direkt gelen ışınların etkisi azalmaktadır

Application of S-UTD-CH Model into Multiple Diffraction Scenarios

In this study, propagation prediction models based on ray tracing in coverage estimation for digital broadcasting systems are compared. Geometrical Theory of Diffraction (GTD), Slope Diffraction (S-UTD) and Slope UTD with Convex Hull (SUTD-CH) models are compared for computation time and propagation path loss. S-UTD-CH model is optimum model with respect to computation time and relative path loss. In this study, effects of transmitter height to relative path loss at the receiver for 1800 MHz operational frequency are discussed. As the transmitter height decreases, buildings penetrate into transition zone of previous buildings and so relative path loss at the receiver decreases. In this case, effects of direct rays decreases

___

  • [1] Kouyoumjian, R. G. ve Pathak, P. H., A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proceedings, IEEE, 1448–1461,(1974).
  • [2] Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L., An Improved Solution Expressed in Terms of UTD Coefficients for Multiple Building Diffraction of Plane Waves, IEEE Antennas and Wireless Propagation Letters 4, 16-19, (2005).
  • [3] Tajvidy, A. and Ghorbani, A., A New Uniform Theory-of-Diffraction-Based Model for the Multiple Building Diffraction of Spherical Waves in Microcell Environments, Electromagnetics, 28 (5), 75-387, (2008)
  • [4] Torabi, E., Ghorbani, A. and Amindavar, H.R., Modification of the UTD model for cellular mobile communication in an urban environment, Electromagnetics, 27, 263–285, (2007).
  • [5] Rodriguez, J.V., Molina-Garcia-Pardo, J.M. and Leandro, J.L., UTD-PO Formulation for the Multiple-Diffraction of Spherical Waves by an Array of Multimodeled Obstacles, IEEE Antennas and Wireless Propagation Letters, 8, 379-382, (2009).
  • [6] Rodriguez, J.V., Molina-Garcia-Pardo, J.M., Pascual-Garcia J. and Leandro, J.L., Comparison of a UTD-PO Formulation for Multiple-Plateau Diffraction With Measurements at 62 GHz, IEEE Trans. Antennas Prop., 61, (2), 1000-1003,(2013).
  • [7] Andersen, J. B., Transition zone diffraction by multiple edges, IEEE Proceedings Microwave Antennas and Propagation, (1994).
  • [8] Andersen, J. B. , UTD multiple-edge transition zone diffraction. IEEE Transactions on Antennas and Propagation, 45, 1093–1097, (1997).
  • [9] Rizk, K., Valenzuela, R., Chizhik, D. ve Gardiol, F., Application of the slope diffraction method for urban microwave propagation prediction, Proceedings, IEEE Vehicular Technology Conference,1150–1155, (1998)
  • [10] Tzaras, C., and Saunders, S. R., An improved heuristic UTD solution for multipleedge transition zone diffraction, IEEE Trans. Antennas Prop., 49, 12, 1678– 1682, (2001).
  • [11] Karousos, A. and Tzaras, C., Multi Time-Domain Diffraction for UWB Signals. IEEE Transactions on Antennas and Propagation, 56 (5), 1420-1427, (2008).
  • [12] Tabakcioglu, M.B. and Kara, A., Comparison of Improved Slope UTD Method with UTD based Methods and Physical Optic Solution for Multiple Building Diffractions, Electromagnetics, 29, 4, 303-320, (2009)
  • [13] Tabakcioglu, M.B. and Kara, A., Improvements on Slope Diffraction for Multiple Wedges, Electromagnetics, 30, 3, 285-296, (2010).
  • [14] Tabakcıoğlu, M.B. ve Cansız, A., Comparison of S-UTD-CH model with other UTD based models, Mosharaka International Conference on Communications, Propagation and Electronics, Jordan, (2010)
  • [15] Tabakcıoğlu, M.B., Ayberkin, D. and Cansız, A., Comparison and Analyzing Propagation Models, Asia-Pasific Conference on Antennas and Propagation, Singapore, (2012)