Ağır Metaller ve Süs Bitkilerinin Fitoremediasyonda Kullanılabilirliği

Son yüzyılda kentleşme, sanayileşme ve dünya nüfusunun hızlı artışı nedeniyle evsel ve endüstriyel üretim ve tüketim koşullarına bağlı olarak oluşan organik ve inorganik zararlı maddeler ekosferin madde bütçesini önemli ölçüde değiştirmiştir. Madencilik, kentsel veya endüstriyel katı, gaz ve sıvı atıkları, pestisit ve yapay gübre kullanımı, boya sanayisi ve araba egzoz gazları doğaya aşırı miktarda ağır metalin salınmasına neden olmaktadır. Ağır metallerin toprakta aşırı birikmesinin sadece toprak verimliliği ve ekosistem fonksiyonları üzerinde değil aynı zamanda besin zinciri yoluyla havyan ve insan sağlığı üzerinde de önemli etkileri vardır. Günümüzde ağır metaller ile kirlenen toprakların temizlenmesinde (fitoremediasyon) hiperakümülatör bitkilerin kullanılması ve bu özelliğe sahip bitkilerin tespit edilmesi önem kazanmaktadır. Bitkilerin ağır metal toksisitesine karşı toleransları bitki türüne, element türüne, strese maruz kalma süresine ve strese maruz kalan doku veya organın yapısına bağlı olarak değişmektedir. Bugüne kadar pek çok bitki remediasyonda kullanılmıştır fakat süs bitkilerinin kirlenmiş toprakların iyileştirilmesinde kullanılması hakkında çok az rapor mevcuttur. Çevresel kirliliğin temizlenmesinde bu bitkilerin kullanılabilirliğinin araştırılması önemli bir temel teşkil edecektir. Bu derlemede, süs bitkilerinin fitoremediasyonda kullanılabilirliği tartışılmıştır

Heavy Metals and Potential Availability of Ornamental Plants for Phytoremediation

The amount of matter in the ecosphere was significantly changed in the last century by urbanization, industrialization and due to the rapid growth of the world population, depending on the conditions of production and consumption of harmful domestic and industrial organic and inorganic substances. Heavy metal pollution of soils is increasingly becoming a global problem with the development of industry, mining activity, irrigation of wastewater and the application of sewage sludge. Heavy metal accumulation in soils has an important influence not only on the fertility of soils and functions of ecosystem but also on the health of animals and human beings via food chains. Today, the removal of toxic metals from the environment using plants (phytoremediation) has become more important ıssue. The tolerance of plants to heavy metal toxicity depend on element type, the duration of exposure to stress and stress types. Up to now, many plants have been found as remediation plants, but there was little report about ornamental plants that can remedy contaminated soils. Thus, this will provide substantial bases for screening out remediation plants. In this review, the potential availability of ornamental plants forphytoremediation is discussed

___

[1] Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S., Chromium toxicity in plants, Environment International, 31, 739-753, (2005).

[2] Niess, D.H., Microbial heavy-metal resistance, Applied Microbiology and Biotechnology, 51, 730-750, (1999).

[3] Benavides, M.P., Gallego, S.M., Tomaro M.L., Cadmium toxicity in plants, Brazilian Journal of Plant Physiology, 17, 21-34, (2005).

[4] Meagher, R.B., Phytoremediation of toxic elemental and organic pollutants, Current Opinion in Plant Biology, 3, 153-162, (2000).

[5] Mcıntyre, T., Phytoremediation of heavy metals from soils, Advances in Biochemical Engineering/Biotechhnology, 78, 97-123, (2003).

[6] Baba, A., Gündüz, O., Save, D., Gürdal, G., Sülün, S., Bozcu, M., Özcan, H., Madencilik faaliyetlerinin tıbbı jeoloji açısından değerlendirilmesi, 62. Türkiye Jeoloji Kurultayı, Ankara, 514-515, (2009).

[7] Vanlı, Ö. ve Yazgan, M., Ağır metallerle kirlenmiş toprakların temizlenmesinde fitoremediasyon tekniği, (2008). http://www.tarimsal.com/fitoremediasyon/fitoremediasyon.htm, (15.01.2013).

[8] Baker, A.J.M., Walker, P.L., Ecophysiology of metal uptake by tolerant plants, in: Shaw A.J. (Ed.), Heavy metal tolerance in plants: Evolutionary Aspects, CRC Press, Boca Raton, 155-177, (1990).

[9] Clemens, S., Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie, 88, 1707-1719, (2006).

[10] Brooks, R.R., General Introduction. In: Brooks, R.R. (ed.). Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp. 1-14, (1998).

[11] Reeves, R.D., Hyperaccumulation of trace elements by plants. In: Morel, J.L., Echevarria, G. ve Goncharova, N. (Eds.). Phytoremediation of metal-contaminated soils, NATO Science Series: IV: Earth and Environmental Sciences, Springer, NY, pp. 1-25, (2006).

[12] Assuncao, A.G.L., Schat, H., Aarts, M.G.M., Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation plants, New Phytologist, 159(2), 351-360, (2003).

[13] Memon, A.R., Aktoprakligül, D., Özdemir, A., Vertii, A., Heavy metal accumulation and detoxification mechanisms in plants, Turkish Journal of Botany, 25, 111-121, (2001).

[14] Işık, K., Bitki Biyolojisi, Palme Yayıncılık, Ankara, (2004). [15] Sharma, P., Dubey, R.S., Lead toxicity in plants, Brazilian Journal of Plant Physiology, 17(1), 35-52, (2005).

[16] Dilaver, Z.,. Peyzaj mimarlığında bitki materyali, Peyzaj, çevre ve tarım (Ed., Yazgan, M.E.), TC Anadolu Üniversitesi Yayın No: 2282. Eskişehir, (2011).

[17] Hocagil, M.M., Aydın, A., Yeler, O., Süs bitkileri sektörü yatırım el kitabı, Mersin, (2012)

18] Reeves, R.D. and A.J.M. Baker., Metal-accumulating plants. In: Phytoremediation of toxic metals: using plants to clean up the environment, Raskin, I. and B.D. Ensley (Eds.). Wiley, New York, pp: 193-229, (2000).

[19] Mulligan, C.N., Yong, R.N. and Gibbs, B.F., Remediation technologies for metal contaminated soils and groundwater: an evaluation, Engineering Geology, 60, 193-207, (2001).

[20] Lasat, M.M., Phytoextraction of metals from contaminated soil: A review of plant/ soil/ metal interaction and assessment of pertinent agronomic issues, Journal of Hazardous Substance Research, 2(5), 1-25, (2000).

[21] Liu, J.N., Zhou, Q. X., Sun, T., Ma, LQ., Wang, S., Identification and chemical enhancement of two ornamental plants for phytoremediation, Bulletin of Environmental Contamination and Toxicology, 80, 260-265, (2008a).

[22] Liu, J.N., Zhou, Q.X., Sun, T., Ma, LQ., Wang, S., Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics, Journal of Hazardous Materials, 151(1), 261-267, (2008b).

[23] Imamul Huq, S.M., Joardar, J.C. and Parvin, S., Marigold (Tagetes patula) and ornamental arum (Syngonia sp.) as phytoremediators for arsenic in pot soil, Bangladesh Journal of Botany, 34(2), 65-70, (2005).

[24] Watharkar, A.D.,Khandare, R.V., Kamble, A. A., Mulla, A.Y., Govindwar, S.P., Jadhav, J.P., Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G., Environmental Science and Pollution Research International, 20(2), 939-49, (2013).

[25] Başçı, N., Cr (VI) iyonunun süs bitkileri kullanılarak topraktan gideriminin araştırılması, Yüksek Lisans Tezi, Çukurova Üniviversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı, Adana (2009).

[26] Siskos, A., Yupsani, A., Symeonidis, L., Yupsanis, T., Similarities and differences in the properties of multiple NDP-kinase isoforms of Alyssum murale, Ni2+ accumulator species, Journal of Plant Physiology, 167, 675-682, (2010).

[27] Minguzzi, C., Vergnano, O., Il contenuto di nichel nelle ceneri di Alyssum bertolonii, Atti Societa Toscana Scienze Naturali, 55,49-74, (1948).

[28] Brooks, R.R., Anderson, C.W.N., Chiarucci, A., LaCoste, C.J., Leblanc, M., Robinson, B.H., Simcock, R., Stewart, R.B., Phytomining for nickel, thallium and gold, Journal of Geochemical Exploration, 67, 407-415, (1997).

[29] Gabrielli, R., Pandolfini, T., Vergnano, G., Comparison of two serpentine species with different nickel tolerance strategies, Plant Soil, 122, 271-277, (1990).

[30] Brooks, R.R., Morrison, R.S., Reeves, R.D., Dudley, T.R., Akman, Y., Hyperaccumulation of nickel by Alyssum Linneus (Cruciferae), Proceedings of the Royal Society of London., Section B, 203, 287-403, (1979).

[31] Manios, T., Stentiford, E.I., Millner, P.A., The effect of heavy metals accumulation on the chlorophyll concentration of Typha Latifolia L. plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecological Engineering, 20(1), pp: 65-74, (2003).

[32] Yoon, J., Cao, X., Zhou, Q., Ma, LQ., Accumulation of Pb, Cu, and Zn in native plant growing on a contaminated Florida Site, Science of the Total Enviroment, 368, 456-464, (2006).

[33] Vajpayee, P., Sharma, S. C., Rai, U. N., Tripathi, R. D., Yunus, M., Bioaccumulation of chromium and toxicity to photosynthetic pigments nitrate reductase activity and protein content of Nelumbo nucifera Gaertn., Chemosphere, 39, 2159-2169, (1999).

18] Reeves, R.D. and A.J.M. Baker., Metal-accumulating plants. In: Phytoremediation of toxic metals: using plants to clean up the environment, Raskin, I. and B.D. Ensley (Eds.). Wiley, New York, pp: 193-229, (2000).

[19] Mulligan, C.N., Yong, R.N. and Gibbs, B.F., Remediation technologies for metal contaminated soils and groundwater: an evaluation, Engineering Geology, 60, 193-207, (2001).

[20] Lasat, M.M., Phytoextraction of metals from contaminated soil: A review of plant/ soil/ metal interaction and assessment of pertinent agronomic issues, Journal of Hazardous Substance Research, 2(5), 1-25, (2000).

[21] Liu, J.N., Zhou, Q. X., Sun, T., Ma, LQ., Wang, S., Identification and chemical enhancement of two ornamental plants for phytoremediation, Bulletin of Environmental Contamination and Toxicology, 80, 260-265, (2008a). [22] Liu, J.N., Zhou, Q.X., Sun, T., Ma, LQ., Wang, S., Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics, Journal of Hazardous Materials, 151(1), 261-267, (2008b).

[23] Imamul Huq, S.M., Joardar, J.C. and Parvin, S., Marigold (Tagetes patula) and ornamental arum (Syngonia sp.) as phytoremediators for arsenic in pot soil, Bangladesh Journal of Botany, 34(2), 65-70, (2005).

[24] Watharkar, A.D.,Khandare, R.V., Kamble, A. A., Mulla, A.Y., Govindwar, S.P., Jadhav, J.P., Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G., Environmental Science and Pollution Research International, 20(2), 939-49, (2013).

[25] Başçı, N., Cr (VI) iyonunun süs bitkileri kullanılarak topraktan gideriminin araştırılması, Yüksek Lisans Tezi, Çukurova Üniviversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı, Adana (2009).

[26] Siskos, A., Yupsani, A., Symeonidis, L., Yupsanis, T., Similarities and differences in the properties of multiple NDP-kinase isoforms of Alyssum murale, Ni2+ accumulator species, Journal of Plant Physiology, 167, 675-682, (2010).

[27] Minguzzi, C., Vergnano, O., Il contenuto di nichel nelle ceneri di Alyssum bertolonii, Atti Societa Toscana Scienze Naturali, 55,49-74, (1948).

[28] Brooks, R.R., Anderson, C.W.N., Chiarucci, A., LaCoste, C.J., Leblanc, M., Robinson, B.H., Simcock, R., Stewart, R.B., Phytomining for nickel, thallium and gold, Journal of Geochemical Exploration, 67, 407-415, (1997).

[29] Gabrielli, R., Pandolfini, T., Vergnano, G., Comparison of two serpentine species with different nickel tolerance strategies, Plant Soil, 122, 271-277, (1990).

[30] Brooks, R.R., Morrison, R.S., Reeves, R.D., Dudley, T.R., Akman, Y., Hyperaccumulation of nickel by Alyssum Linneus (Cruciferae), Proceedings of the Royal Society of London., Section B, 203, 287-403, (1979).

[31] Manios, T., Stentiford, E.I., Millner, P.A., The effect of heavy metals accumulation on the chlorophyll concentration of Typha Latifolia L. plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecological Engineering, 20(1), pp: 65-74, (2003).

[32] Yoon, J., Cao, X., Zhou, Q., Ma, LQ., Accumulation of Pb, Cu, and Zn in native plant growing on a contaminated Florida Site, Science of the Total Enviroment, 368, 456-464, (2006).

[33] Vajpayee, P., Sharma, S. C., Rai, U. N., Tripathi, R. D., Yunus, M., Bioaccumulation of chromium and toxicity to photosynthetic pigments nitrate reductase activity and protein content of Nelumbo nucifera Gaertn., Chemosphere, 39, 2159-2169, (1999).

[34] Wei, C.Y., Chen T.B., Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation, Chemosphere, 63, 1048- 1053, (2006).

[35] Díez Lázaro, J., Kidd, P.S., Monterroso Martínez, C., A phytogeochemical study of the Trás–Os– Montes Region Ne Portugal: Possible species for plant-based soil remediation technologies, Science of the Total Environment, 354(2-3), 265-277, (2006).

[36] Köseoğlu, C., Atık çamurun iyileştirilebilmesi için bitkisel arıtım’ın (fitoremediyasyon) kullanım olanaklarının araştırılması, Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı, Adana (2007).