1,3-İndandionun Farklı Çözücülerdeki Tautomer Oranlarının FT-IR ve Hesapsal Yöntemlerle Belirlenmesi

1,3-indandionun tautomer oranları farklı çözücüler (CH3CN, C6H6, MeOH, THF, CCl4, CHCl, DCM) içerisinde, FT-IR ve hesapsal yöntemlerin birlikte kullanılmasıyla belirlenmiştir. Tüm çözücülerde keto tautomerin enol tautomerinden daha fazla olduğu tespit edilmiş olup, enol tautomerin en fazla DCM içerisinde (% 28) bulunduğu gözlenmiştir

Determination of Relative Tautomer Ratios of 1,3-Indandione in Different Solvents by FT-IR and Computational Methods

The tautomeric ratios of 1,3-indandione were determined in different solvents (CH3CN, C6H6, MeOH, THF, CCl4, CHCl3, DCM) by means of both experimental FT-IR and computational IR methods. It is found that the keto tautomer is more stable than enol tautomer in all solvents and DCM is the best solvent for the stabilization of enol tautomer (%28)

___

[1] Anandan, K., Kolandaivel, P., Kumaresan, R., “Ab initio and DFT studies on tautomerism of indazolein gaseous and aqueous phases”, Journal of Molecular Structure (Theochem), 686, 83–89, (2004).

[2] Raczyn´ska, E. D., Kosin´ska, W., Os´miałowski, B. ve Gawinecki, R., “Tautomeric Equilibria in Relation to Pi-Electron Delocalization”, Chemical Reviews, 105, 3561-3612, (2005).

[3] Su, C., Lin, C., Wu, C. ve Lien, M., “Ab Initio Study on the Keto-Enol Tautomerism of the r-Substituted Acetaldehydes XH2CCH=O (X = H, BH2, CH3, NH2, OH, F, CN, NC, and Cl): Comparison with the Tautomerism in - Substituted Acetaldimines and Acetyl Derivatives”, Journal of Physical Chemistry A, 103, 3289-3293, (1999).

[4] Kwon, Y., “Keto–enol systems of some fluorinated cyclopentanones and cyclobutanones: density functional theory calculations”, Journal of Molecular Structure (Theochem), 488, 93–99, (1999).

[5] Capon, B., Guo, B. Z., Kwok, F. C., Siddhanta, A. K., Zucco, C., “Generation of Simple Enols in Solution”, Accounts of Chemical Researchs, 21, 135, (1988).

[6] Karelson, M.M., Katritzky, A.R., Szafran, M., Zener, M.C., “Quantitative predictions of tautomeric equilibria for 2-, 3-, and 4-substituted pyridines in both the gas phase and aqueous solution: combination of AM1 with reaction field theory”, The Journal of Organic Chemistry, 54, 6030, (1989).

[7] Wong, M.W., Leung-Toung, R., Wentrap, C., “Tautomeric equilibrium and hydrogen shifts of tetrazole in the gas phase and in solution”, Journal of The American Chemical Society, 115, 2465, (1993).

[8] Parchment, O.G., Green, D.V.S., Taylor, P.J., Hiller, I.H., “The prediction of tautomer equilibria in hydrated 3-hydroxypyrazole: a challenge to theory”, Journal of The American Chemical Society 115, 2352, (1993)

[9] Cieplak, P., Bash, P., Singh, U.C., Kollman, P.A., “A theoretical study of tautomerism in the gas phase and aqueous solution: a combined use of state-ofthe-art ab initio quantum mechanics and free energy-perturbation methods”, Journal of The American Chemical Society, 109, 6283, (1987).

[10] Cao, M., Teppen, B.J., Miller, D.M., Pranata, J., Schafer, L., “Tautomeric Equilibria of 3-Hydroxypyrazole in the Gas Phase and in Solution: A Theoretical Study Combining ab Initio Quantum Mechanics and Monte Carlo Simulation Methods”, The Journal of Physical Chemistry, 98, 11353, (1994).

[11] Cramer, C.J., Truhlar, D.G., “Correlation and solvation effects on heterocyclic equilibria in aqueous solution”, Journal of The American Chemical Society 115, 8810, (1993).

[12] Orozco, M., Luque, F.J., “Self-consistent reaction field computation of the reactive characteristics of DNA bases in water”, Biopolymers 33, 1851, (1993).

[13] Kwiatkowski, J.S., Bartlett, R.J., Person, W.B., “Contributions from electron correlation to the relative stabilities of the tautomers of nucleic acid bases”, Journal of The American Chemical Society 110, 2353, (1988).

[14] Pipkin, J. D. and Stella, V. J., Journal of The American Chemical Society, 104, 24, 6672, (1982).

[15] Sander, G. M. and Peter, B., “Solvent effects on keto-enol equilibria: tests of quantitative models”, The Journal of Organic Chemistry, 50, 8, 1216, (1985).

[16] Ktritzky, A. R., Advances in Heterocyclic Chemistry Volume 1, Academic Press New York, (1963).

[17] Burdett, J. L., Rogers, M. T., “Keto-Enol Tautomerism in β-Dicarbonyls Studied by Nuclear Magnetic Resonance Spectroscopy.1 I. Proton Chemical Shifts and Equilibrium Constants of Pure Compounds”, Journal of The American Chemical Society 86, 2105, (1964)

[18] Riahi, S., Moghaddam, A. B., Norouzi, M. R. G. P., Latifi, M., “RETRACTED: Calculation of electrode potentials of 5-(1,3-dioxo-2-phenyl-indan-2-yl)-2,3- dihydroxy-benzoic acid, molecular structure and vibrational spectra: A combined experimental and computational study”, Journal of Molecular Structure: Theochem 807, 137–145, (2007).

[19] Enchev, V., Abrahams, I., Angelova, S., Ivanova, G., “Fast intramolecular proton transfer in 2-(hydroxyaminomethylidene)-indan-1,3-dione”, Journal of Molecular Structure: Theochem 719, 169–175, (2005). [20] Link, K.P., “The Discovery of Dicumarol and Its Sequels”, Circulation 19, 97, (1959).

[21] Field, J.B., Goldfarb, M.S., Ware, A.G., Griffith, G.C., “Dipaxin-2- Diphenylacetyl-1,3-Indandione; Clinical Evaluation of a New Anticoagulant”, Circulation 11, 576, (1955).

[22] Dolmella, A., Gatto, S., Girardi, E., Bandoli, G., “X-ray structures of the anticoagulants coumatetralyl and chlorophacinone. Theoretical calculations and SAR investigations on thirteen anticoagulant rodenticides”, Journal of Molecular Structure 513, 177, (1999).

[23] Martin, G.R., Kirkpatrick, W.E., King, D.R., Robertson, I.D., Hood, P.J., Sutherland, J.R., “Assessment of the Potential Toxicity of an Anticoagulant, Pindone (2-Pivalyl-1,3-Indandione), to Some Australian Birds”, Wildlife Research, 21, 85, (1994).

[24] Shapiro, S.L., Geiger, K., Freedman, L., “Indandione Anticoagulants”, TheJournal of Organic Chemistry, 25, 1860, (1960).

[25] Beauregard, J.R., Tusing, T.W., Hanzal, R.F., “Anticoagulant Rodenticide, Toxicity and Antidotal Studies on 2-Pivalyl-1,3-indandione (Pival), an Anticoagulant Rodenticide”, Journal of Agricultre and Food Chemistry, 3, 124, (1955).

[26] Moghaddam, A. B., Ganjali, M.R., Norouzi, P., Latifi, M., “A Green Method for the Electroorganic Synthesis of New 1,3-Indandione Derivatives”, Chemical and Pharmaceutical Bulletin, 54, 1391, (2006).

[27] Enchev V., Ivanova G., Pavlovic G., Rogojerova M., Ahmedova A., Mitewa M., “Reaction of 2-acetyl-indane-1,3-dione with aniline - Schiff base or enamine?”, Journal of Molecular Structure, 654, 11-20, (2003).

[28] Angelova, S., Enchev, V., Kostova, K., Rogojerov, M. and Ivanova, G., “Theoretical and Spectroscopic Study of 2-Substituted Indan-1,3-diones: A Coherent Picture of the Tautomeric Equilibrium”, The Journal of Physical Chemistry A, 111, 9901-9913, (2007).

[29] Tekin N., Namli H., Turhan O., “Solvents effect on infrared spectra of 1,3- indanedione in organic solvents”, Vibrational Spectroscopy 39, 214–219, (2005).

[30] Turhan, O., “Bazı Organik Reaksiyonların ve Metal Ligant Etkileşmelerinin FTIR ile Eşzamanlı İncelenmesi”, Doktora Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir, (2006).

[31] Rao, C. N. R., Chemical Applications of Infrared Spectroscopy, Academic Press New York and London, (1963).

[32] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, “Gaussian 03”, Revision D.01, Gaussian, Inc., Wallingford, CT, (2004).

[33] Hehre, W.J., Radom, L., Schleyer, P.v.R., Pople, J.A., “Ab Initio Molecular Theory”, Wiley, New York, (1986).

[34] Jensen, F., “Introduction to Computational Chemistry”, John Wiley & Sons, London, (1999).

[35] Parr, R.G., Yang, W., “Density Functional Theory of Atoms and Molecules”, Oxford University Press, New York, (1989).

[36] Lee, C., Yang, W., Parr, R.G., “Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density”, Physical Review B, 37, 785, (1988).

[37] Becke, A.D., “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, 38, 3098, (1988).