Yoğunluk Fonksiyoneli Teorisi ile LiAlSi’un Basınç Altında Elektronik ve Titreşim Özellikleri

Li içerikli malzemeler teknolojinin gelişmesinde önemli yere sahiptirler. Bu nedenle Li içerikli kristallerin yapısal elektronik vedinamik özelliklerinin bilinmesi önemlidir. LiAlSi kristalinin yapısal, elektronik ve örgü dinamik özellikleri, ab-initio psödopotensiyelmetodu ve Genel Gradyent Yaklaşımı ile doğrusal bir tepki ile gerçekleştirilmiştir. LiAlSi kristali Zincblende yapıda olup uzay grubu$Foverline43m$'dir. LiAlSi kristalinin örgü parametresi 6.0306 Å olarak bulunmuştur. Hesaplanan örgü parametresi, yığın modulü ve yığınmodülünün birinci dereceden basınca göre türevi, deneysel ve diğer teorik hesaplamalar ile uyumludur. Elektronik band yapısı vefonon dağılım eğrisi, Quantum Espresso programı kullanılarak analiz edilmiştir. Fonon dağılım eğrisi ve fonon durumların yoğunluğu,yoğunluk fonksiyonel pertürbasyon teorisi ile hesaplanmıştır. Fonon frekans değerleri pozitif olduğundan LiAlSi kristali kararlıyapıdadır. Daha sonra P= 8.892 GPa basınç altında elektronik band yapısı ve fonon dağılım eğrisi incelenmiştir. P=0.0 GPa basınçtaLiAlSi kristali yarıiletken özelliği gösterirken P= 8.892 GPa basınç uygulandığında iletken özelliği gösterdiği ortaya konmuştur. Bubasınç değerinde de fonon frekans değerleri pozitiftir. Ayrıca iki farklı basınç altında (P=0.0 GPa ve P=8.892 GPa) Γ, X ve L yükseksimetri noktalarındaki enine, boyuna akustik ve enine, boyuna optik mod değerleri listelenmiştir. Bu çalışmanın sonuçlarının literatürekatkı sağlayacağı düşünülmektedir.

Electronic and Vibrational Properties of LiAlSi under Pressure: A Density Functional Theory

Li containing materials have an important place in the development of technology. Therefore, knowledge of the structural and dynamic properties of electronic Li-containing crystals is important. The structural, electronic and lattice dynamic properties of LiAlSi crystal was performed by an ab-initio pseudopotential method and a linear response with the General Gradient Approximation. LiAlSi crystal is in Zincblende structure and the space group is $Foverline43m$ . The lattice parameter of LiAlSi crystal was 6.0306 Å. The computed lattice parameter, bulk modulus and first-order derivation with respect to pressure of the bulk modulus agree well with the experimental and other theoretical calculations. The electronic band structure and phonon dispersion curve were analyzed by using the Quantum Espresso program. Phonon dispersion curve and phonon density of states were calculated by a density functional perturbation theory. Since the phonon frequency values are positive, the LiAlSi crystal is stable. Then, electronic band structure and phonon distribution curve under P= 8.892 GPa pressure were examined. LiAlSi crystal showed semiconductor properties at P = 0.0 GPa pressure, whereas P = 8.892 GPa pressure showed semi-metal properties. At this pressure, the phonon frequency values are also positive. In addition, transverse, longitudinal acoustic and transverse, longitudinal optical mode values at high symmetry points Γ, X and L under two different pressures (P = 0.0 GPa and P = 8.892 GPa) are listed. It is thought that the results of this study will contribute to the literature.

___

  • Kandpal, H. C., Felser, C., Seshadri, R. (2006). Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D.:Appl. Phys. 39, 776-785. https://doi.org/10.1088/0022-3727/39/5/S02
  • Casper, F., Grof, T., Chadov, S., Balke, B., Felser, C. (2012). Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001/1-8. https://doi.org/10.1088/0268-1242/27/6/063001
  • Boom, E. (1949). Doklady Akademii Nauk SSSR 645-646.
  • Tillard, M., Belin, C.,Spina, L., Jia, Y. Z. (2005). Phase stabilities electronic and electrochemical properties of compounds in the LiAl-Si system. Solid States Science 7, 1125-1134. https://doi.org/10.1016/j.solidstatesciences.2005.04.010
  • Barth, J., Fecher, G. H., Schwind, M., Beleanu, A., Felser, C., Shkabko, A., Weidenkaff, A., Hass, J., Reller, A., Köhne, M. (2010). Investigation of the Thermoelectric Properties of LiAl Si and LiAlGe. Journal of Electronic Materials, 39(9), 1856-1860. DOI: 10.1007/s11664-010-1076-9
  • Nowotny, H., Holub, F. (1960). Untersuchungen an metallischen Systemen mit Flußspatphasen. Mon. Für Chem. Verwandte-.Teil. und Wiss. 91, 877-887. https://doi.org/10.1007/BF00929560
  • Spina, I., Jia, Y. Z., Ducourant, B., Tillard, M., Belin, C. (2003). Optoelectronic and transport properties of LiBZ (B= Al, In, Ga and Z= Si, Ge, Sn) semiconductors. Z. Für Krist.-Cryst. Matter, 218, 740-746. https://doi.org/10.1016/j.jssc.2017.12.014
  • Schuster, H. U., Hınterkeuser, H. W., Schafer, W., Will, G.. (1976). Investigation on Neutron Diffraction of the Phases LiAlSi and LiAlGe, Z. Naturforsch. 316, 1540-1541.
  • Baroni, S., Corso, A. D., de Gironcoli, S., Giannozzi P. http://www.pwscf.org
  • Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865- 3868. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
  • Kohn, W., Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, 1133- 1138. DOI: https://doi.org/10.1103/PhysRev.140.A1133
  • Monkhorst, H. J., Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13, 5188-5192. DOI: https://doi.org/10.1103/PhysRevB.13.5188
  • Murnaghan, F. D. (1944). The compressibility of media under extreme pressure. Proceedings of the National Academy of Sciences of the United States of America, vol. 30(9), 244-247. doi: 10.1073 / pnas.30.9.244
  • Shan, S. H., Khan, S. H., Lafer, A., Murtaza, G.. (2018). Optoelectronic and transport properties of LiBZ (B: Al, In, Ga and Z: Si, Ge, Sn) semiconductors. Journal of Solid State Chemistry 258, 800-808. https://doi.org/10.1016/j.jssc.2017.12.014
  • Backelmann, W., Schuster, H. U. (1974). Ternäre Phasen im Dreistoffsystem Lithium‐Gallium‐Germanium. Z. Für Anorg. Allg. Chem. 410, 233-240. https://doi.org/10.1002/zaac.19744100303
  • Kacimi, S., Mehnane, H., Zaoui, A. (2014). I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. J. Alloy. Compd. 587, 451-458. https://doi.org/10.1016/j.jallcom.2013.10.046