Işgının Kök Toprağından Bacillus atrophaeus’un İzolasyonu ve Tanımlanması: α-Amilaz’ın Elde Edilmesi ve Karakterizasyonu

Amilazlar; bitkiler, hayvanlar ve mikroorganizmalar tarafından üretilen nişastayı parçalayan enzimlerdir. Mikroorganizmalartarafından üretilen amilazlar; eczacılık, gıda, deterjan, tekstil, kağıt ve kağıt hamuru endüstrisi gibi çok çeşitli endüstriyeluygulamalarda kullanılabilme özelliğine sahiptir. Bununla birlikte, amilaz üreten mikroorganizmaların izolasyonunda halakısıtlamalar vardır. Işgın bitkisi tıp başta olmak üzere birçok alanda kullanılan önemli bir bitkidir. Bu çalışmanın amacı yararlı ışgınbitkisinden bakterinin izolasyonu gerçekleştirerek biyoteknolojik öneme sahip olan amilazın elde edilmesidir. Bakteri izolasyonudilüsyon tekniği kullanılarak yapıldı. Bitki kök kısmında bulunan toprak alınarak seyreltme işlemi gerçekleştirildi. İzolasyon sonrasımorfolojik, fizyolojik ve biyokimyasal testler yapıldı. Mikroorganizmanın tür teşhisi için 16 S rRNA analizi gerçekleştirildi. Bakterisekans analiz sonucunda 864 baz çiftine sahip Bacillus atrophaeus olduğu tespit edildi. Tanımlamada etkili olan biyokimyasal testlersonucunda bakterinin gram pozitif (+), basil ve hareketsiz olduğu belirlendi. Katalaz, hemoliz ve glikoz un pozitif (+) sonuç verdiği;oksidaz, H2S ve indol gibi biyokimyasal testlerin negatif (-) olduğu tespit edildi. Öncelikle bakteri üremesinin optimizasyonusağlandı. Zaman, sıcaklık ve pH gibi bakteri üremesine doğrudan etki eden önemli parametreler çalışıldı. Optimum bakteri üretimisırasıyla 72.saat, 30 ${}^oC$ ve pH 6.0 belirlendi. Güçlü amilaz üretimini belirlemek amacıyla nişastalı katı besi yerinde bakteriler üretildi.İnkübasyon sonrası lügol çözeltisi kullanılarak mikroorganizmanın amilaz ürettiği tespit edildi. Amilaz sentezlendiği belirlenenbakterinin optimal üretim koşulları tespit edildi. Bacillus atrophaeus’tan α-amilaz’ın maksimum üretim koşulları 36. saat, 35 ${}^oC$ vepH 6.0 olduğu görüldü. Optimum şartlarda üretilen bakterinin süpernatant kısmı kullanılarak enzim karakterizasyonu gerçekleştirildi.Enzim sıcaklık ve pH’sı sırasıyla 40 ${}^oC$ ve pH 6.0 da maksimum aktivite gösterdiği tespit edildi. Bu tespitler sonucunda istenilenbakteri elde edildi. Tanımlanan ve amilaz ürettiği tespit edilen bakteri, farklı biyoteknolojik alanlarda kullanılma özelliğine sahipolduğu belirlendi.

Isolation and Identification of Bacillus atrophaeus from Root Soil of the Işgın: Obtaining and Characterization of α-Amylase

Amylase; enzymes that break down starch produced by plants, animals and microorganisms. Amylases produced by microorganisms; pharmaceutical, food, detergent, textile, paper and pulp industry. However, there are still limitations in the isolation of amylaseproducing microorganisms. Işgin plant is an important plant used in many fields, especially in medicine The aim of this study was to isolate the bacteria from the useful plant ışgın and to obtain amylase which is of biotechnological importance. Bacterial isolation was performed using dilution technique. Soil in the root part of the plant was removed and dilution was performed. Morphological, physiological and biochemical tests were performed after isolation.16 S rRNA analysis was performed for species identification of microorganism. Bacterial sequence analysis result detected Bacillus atrophaeus with 864 base pairs. As a result of biochemical tests which were effective in identification, the bacteria were gram positive (+), bacillus and immobile. Catalase, hemolysis and glucose positive (+) results; Biochemical tests such as oxidase, H2S and indole were found to be negative (-).Firstly, bacterial growth was optimized. Important parameters that directly affect bacterial growth such as time, temperature and pH were studied. Optimum bacterial production was determined at 72 hours, 30 ${}^oC$ and pH 6.0, respectively. In order to determine strong amylase production, bacteria were produced from starch solid media. After incubation, it was determined that microorganism produced amylase by using lugol solution. The optimal production conditions of the bacteria determined to be amylase synthesized were determined. The maximum production conditions of α-amylase from Bacillus atrophaeus were 36 hours, 35 ${}^oC$ and pH 6.0. Enzyme characterization was performed using the supernatant portion of the bacteria produced under optimum conditions. Enzyme temperature and pH were found to have maximum activity at 40 ${}^oC$ and pH 6.0, respectively. As a result of these determinations, the desired bacteria were obtained. Bacteria identified and found to produce amylase were determined to be used in different biotechnological areas.

___

  • Ahmed, A. & Alkando, H.M. I. (2011). A potential new isolate for the production of a thermostable extracellular-amylase. African Journal of Bacteriology Research, 3: 129–37.
  • Asgher, M., Asad, M.J., Rahman, S.U. & Legge, R.L. (2007). A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering, 79: 950–955.
  • Ashwini, K., Gaurav, K., Karthik, L. & Bhaskara Rao, K.V. 2011. Optimization, production and partial purification of extracellular αamylase from Bacillus sp. Marini. Archives of Applied Science Research, 3:33–42.
  • Behal, A., Sharma, M.K., Puri, P., Singh, J. & Batra, N. (2006). Characterization of alkaline α-amylase from Bacillus sp.AB 04. International Journal of Agriculture and Biology, 8: 80–83.
  • Bernfeld, P. (1955). Enzymes Carbohydrate Metabolism. In Methods In Enzymol. Acad. Press,17: 149-158.
  • Demirkan, E. (2011). Production, purifi cation, and characterization of α-amylase by Bacillus subtilis and its mutant derivates. Turkish Journal of Biology, 35: 705–712.
  • Feller, G. & Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 1: 200–208, https://doi.org/10.1038/nrmicro773.
  • Hazaa, M.M., Sabae, S.Z., Areej Ibrahim, F. T., Eldourghamy, A.S. & Sayed, H. (2018). Production, Purification and Characterization of Alfa-amylase produced by Bacteria from Pharaonic Lake. Journal of Basic and Environmental Sciences, 5:162–173
  • Lévêque, E., Janeček, Š., Haye, B. & Belarbi, A. (2000). Thermophilic archaeal amylolytic enzymes. Enzyme and Microbial Technology, 26: 3–14.
  • Mahdavi, A., Sajedi, R.H., Rassa, M. & Jafarian, V. (2010). Characterization of an α-amylase with broad temperature activity from an acid-neutralizing Bacillus cereus strain. Iranian journal of biotechnology, 8: 103–111.
  • Malhotra, R., Noorwez, S.M. & Satyanarayana, T. (2000). Production and partial characterization of thermostable and calciumindependent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett Appl Microbiol, 31:378–84.
  • Ozdemir, S., Aguloglu Fincan, S., Karakaya, A. & Enez, B. (2018). A Novel Raw Starch Hydrolyzing Thermostable α-Amylase Produced by Newly Isolated Bacillus mojavensis SO-10: Purification, Characterization and Usage in Starch Industries. Brazilian Archives of Biology and Technology, 61:e18160399.
  • Pandey, A., Nigam, P., Soccol, C.R., Socco, V.T., Singh, D. & Mohan, R. (2000). Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31: 135–52.
  • Pinjari, A. B. & Kotari, V. (2018). Characterization of extracellular amylase from Bacillus sp. strain RU1. Journal of Applied Biology & Biotechnology, 6 (3): 29-34.
  • Rao, M.B., Tanksale, A.M., Ghatge, M.S. & Deshpande, V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62: 597–635.
  • Sanchez, A.C., Ravanal, M. C. , Andrews, B. A. & Asenjo, J. A. (2019). Heterologous expression and biochemical characterization of a novel cold active α-amylase from the Antarctic bacteria Pseudoalteromonas sp. 2-3. Protein Expression and Purification, 155: 78–85.
  • Saxena, R.K., Dutt, K., Agarwal, L. & Nayyar, P.A. (2007). Highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresource Technology, 98:260–265
  • Schmidt, S., Martin, A., Schadt, C., Lipson, D., Meyer, A. & Costello, E. (2005). Profound Seasonal Changes in Microbial Diversity and Function in an Alpine Environment. New York: Mc-Graw Hill.
  • Sindhu, M.K., Singh, B.K. & Prased, T. (1997). Changes in starch content of anhar seed due to fungal attack. Phytopathology, 34: 269–71.
  • Susmita, S., S, K., Aava, G., Rojina, M., Ruby, S., Sandhya, D., Om Prakash, P., Santosh, K., Pramod, P. (2019). Screening and Optimization of Thermo-Tolerant Bacillus sp. for Amylase Productıon and Antıfungal Actıvıty. Journal of Institute of Science and Technology, 24(1): 47–56.
  • Swain, M.R., Kar, S., Padmaja, G. & Ray, R.C. (2006). Partial characterization and optimization of production of extracellular alphaamylase from Bacillus subtilis isolated from culturable cow dung microflora. Polish Journal of Microbiology, 55: 289–96.
  • Vaseekaran, S., Balakumar, S. & Arasaratnam, V. (2010). Isolation and identification of a bacterial strain producing thermostable αamylase. Tropical Agricultural Research, 22:1–11.
  • Vijayalakshmi, K., Sushma, S.A. & Chander, P. (2012). Isolation and characterization of Bacillus subtilis KC3 for amylolytic activity. International Journal of Bioscience, Biochemistry and Bioinformatics, 2: 336.