Heyelan Sonucu Meydana Gelen Tsunamiler İçin Kıstas Bir Analitik Çözüm

Denizaltı heyelanları sonucu meydana gelen tsunami dalgalarının yayılımlarının modellenmesi için bir analitik çözüm geliştirilmiştir.Önerilen çözüm blok tipi taban profillerinin uygulanmasına imkân verdiği için özellikle deneysel ve sayısal modellerin doğrulanmasıiçin kullanılabilecektir. Tsunami tırmanması, yani kıyı çizgisindeki dalga yüksekliğinin zaman serisi ve maksimum tırmanma önerilenanalitik model aracılığıyla hesaplanmıştır. Taban profilinin dikliğinin ve uzunluğunun maksimum tırmanma üzerindeki etkileri de ayrıcaincelenmiştir.

A Benchmark Analytical Solution for Landslide Tsunamis

An analytical solution is developed to model propagation of tsunami waves generated by underwater landslides. The proposed solutioncould particularly be used for validation of experimental and numerical models, since it allows imposition of block-type bottom profiles.Tsunami run-up, that is, time series of water elevations at the initial shoreline, and its maximum is calculated through the proposedanalytical model. Effects of steepness of the bottom profile and slide length on the maximum run-up are also analyzed.

___

  • Aydın, B. (2021). An analytical study on tsunami run-up due to submarine landslides from different bottom profiles. Afyon Kocatepe University Journal of Science and Engineering, 21(2), 426-433.
  • Bowering, R. J. (1970). Landslide generated waves: a laboratory study. Master’s thesis, Queen’s University, Kingston, Ontario, Canada.
  • Das, M. M. and Wiegel, R. L. (1972). Waves generated by horizontal motion of a wall. J. Waterw. Harbors Coastal Eng. Div. Am. Soc. Civ. Eng., 98, 49-65.
  • Di Risio, M., Bellotti, G., Panizzo, A., and De Girolamo, P. (2009). Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering, 134, 53-60.
  • Di Risio, M. and Sammarco, P. (2003). Analytical modeling of landslide-generated waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134, 53-60.
  • Fritz, H. M., Hager, W. H., and Minor, H.-E. (2004). Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130 (6), 287-302.
  • Fuchs, H., Winz, E., and Hager, W. H. (2004). Underwater landslide characteristics from 2D laboratory modeling. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(6), 480-488.
  • Heller, V. and Spinneken, J. (2015). On the effect of the water body geometry on landslide tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coastal Engineering, 104(118), 113-134.
  • Heller, V. and Spinneken, J. (2013). Improved landslide-tsunami prediction: Effects of block model parameters and slide model. Journal of Geophysical Research: Oceans, 118, 1489-1507.
  • Kamphuis, J. W., and R. J. Bowering. (1970). Impulse waves generated by landslides, In Proceedings of 11th Coastal Engineering Conference, 575-588.
  • Liu, P. L.-F., Lynett, P., and Synolakis, C. E. (2003). Analytical solutions for forced long waves on a sloping beach. Journal of Fluid Mechanics, 478, 101-109.
  • Lynett, P. and Liu, P. L.-F. (2005). A numerical study of the runup generated by three-dimensional landslides. Journal of Geophysical Research, 110, C03006.
  • Panizzo, A., De Girolamo, P., and Petaccia, A. (2005). Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110, C12025.
  • Romano, A., Di Risio, M., Bellotti, G., Molfetta, G., Damiani, L., and De Girolamo, P. (2016). Tsunamis generated by landslides at the coast of conical islands: Experimental benchmark dataset for mathematical model validation. Landslides, 13(6), 1379-1393.
  • Trifunac, M. D., Hayir, A., and Todorovska, M. I. (2003). A note on tsunami caused by submarine slides and slumps spreading in one dimension with nonuniform displacement amplitudes. Soil Dynamics and Earthquake Engineering, 23, 223-234.
  • Tuck, E. O. and Hwang, L. S. (1972). Long wave generation on a sloping beach. Journal of Fluid Mechanics, 51, 449-461.
  • Walder, J. S., Watts, P., Sorensen, O. E., and Janssen, K. (2003). Tsunamis generated by subaerial mass flows. Journal of Geophysical Research, 108, No. B5, 2236.
  • Watts, P. (1998). Wavemaker curves for tsunamis generated by underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 127-137.
  • Watts, P., Grill, S. T., Tappin, D. R., and Fryer, G. J. (1998). Tsunami generation by submarine mass failure II: Predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131(6), 298-310.