Türkiye’deki Bazı Tıbbi ve Aromatik Bitkilerin Antioksidan Potansiyalleri ve Fenolik Kompozisyonları

Tıbbi ve aromatik bitkiler, insanlık tarihinin ilk zamanlarından beri sadece gıda ve kozmetik amaçlı olarak değil aynı zamanda hastalık risklerine karşı geleneksel tedavi amacı ile de kullanılmıştır. Tüketilmeleri ile beraber dejeneratif hastalıklarla ilgili riskleri azaltma potansiyellerinin, sahip oldukları antioksidan özellik gösteren biyoaktif bileşikler, özellikle fenolik maddelerle ilgili olduğu son yıllarda yapılan çalışmalarla ortaya konulmuştur. Günümüzde sağlıklı beslenme ve fonksiyonel gıdalara olan ilginin artması ile beraber, bu bitkilerin üretimi ve kullanımlarıyla ilgili talebin önümüzdeki yıllarda artacağı öngörülmektedir. Çalışmamızda, ülkemizde sıklıkla tüketilen bazı tıbbi ve aromatik bitkilerin (adaçayı, anason, çemen, ıhlamur, melisa, defne yaprağı, nane, reyhan, rezene ve sinameki) toplam fenolik madde miktarları, antioksidan potansiyelleri, ve fenolik kompozisyonları belirlenmiştir. Toplam fenolik madde içeriği açısından en zengin bitkiler adçayı, ıhlamur, defne ve melisa (16.89-21.12 mg GAE/g bitki), en düşük bitkiler ise anason, çemen ve rezene yaprağı (3.47-3.77 mg GAE/g bitki) olarak belirlenmiştir. Dört farklı yöntemle, 2,2’-azinobis(3-etilbenzotiazolin-6-sülfonik asit) (ABTS), 1,1-difenil-2-pikrilhidrazil (DPPH), ferrik iyonu indirgeyici antioksidan potansiyeli (FRAP) ve bakır (II) iyonu indirgeyici antioksidan kapasitesi tayini, belirlenen toplam antioksidan kapasitesi sonuçlarına göre ıhlamur, adaçayı, defne yaprağı ve melisa en yüksek antioksidan potanisyele sahip bitkiler olmuşlardır. Toplam fenolik madde içeriği ile antioksidan potansiyeli arasında önemli derecede yüksek korelasyon olduğu (R2=0.0.87-0.89) gözlenmiştir. EC50 değeri, DPPH ve ABTS analizleri açısından değerlendirildiğinde, en yüksek ıhlamur (5.93±0.53 ve 1.05±0.03 mg bitki/mL) ve en düşük anason (82.13±12.08 ve 12.08±0.79 mg bitki/mL) bitkilerine ait olmuştur. Çalışmamızda belirlenen fenolik madde içeriği açısından ise, protokateşuik asit, kafeik asit, klorojenik asit ve ferulik asitin bu bitkilerde en sık belirlenen fenolik asitler olduğu ve flavaonoidlerden ise kuersetin ve kamferolün belirlendiği görülmüştür.

Antioxidant Potential and Phenolic Compositions of Some Aromatic and Medicinal Herbs in Turkey

Medicinal and aromatic herbs have been used in human history for not only food and cosmetic purposes, but also for their medicinal properties. The studies conducted recently have revealed that the potential of reducing the risks of degenerative diseases upon the consumption of those plants is related to their bioactive constituents, specifically phenolic compounds, which possess antioxidant potential. Nowadays, with the increasing demands for healthy diet and functional foods, the production and consumption of aromatic and medicinal herbs are predicted to grow in future. In this study, the total phenolic content, antioxidant potential and phenolic composition of some plants (sage, anise, fenugreek, linden, lemonbalm, bay leaf, mint, purple basil, fennel and senna) frequently used in Turkish cuisine have been determined. In terms of total phenolic content, sage, linden, bay leaf and lemon balm (16.89-21.12 mg GAE/g plant) had the highest level, whereas, anise, fenugreek and fennel had the lowest content (3.47-3.77 mg GAE/g plant). Total antioxidant capacities were analysed by four different methods: 2,2’-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays. Linden, sage, bay leaf and lemon balm had the highest antioxidant potential and there was a significant and high correlation between total phenolic content and antioxidant potential values (R2=0.87-0.89). EC50 values of DPPH and ABTS assay were found to be the highest for linden (5.93±0.53 and 1.05±0.03 mg plant/mL) and lowest for anise (82.13±12.08 and 12.08±0.79 mg plant/mL). The phenolic composition determined in this study showed that the most frequently observed phenolic acids in those plants were protocatechuic acid, caffeic acid, chlorogenic and ferulic acid, whereas kaempferol and quercetin were the major flavonoids. 

___

  • Acıbuca, V., & Budak, D. (2018). Dünya ’ da ve Türkiye ’ de Tıbbi ve Aromatik Bitkilerin Yeri ve Önemi. Çukurova Tarım Gıda Bilimleri Dergisi, 33(1), 37–44.
  • Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine:  CUPRAC Method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x
  • Atoui, A. K., Mansouri, A., & Boskou, G. (2005). Food Chemistry Tea and herbal infusions : Their antioxidant activity and phenolic profile, 89, 27–36. https://doi.org/10.1016/j.foodchem.2004.01.075
  • Bahadori, M. B., Zengin, G., Bahadori, S., & Dinparast, L. (2018). Phenolic composition and functional properties of wild mint ( Mentha longifolia var . calliantha ( Stapf ) Briq .). International Journal of Food Properties, 21(1), 183–193. https://doi.org/10.1080/10942912.2018.1440238
  • Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/https://doi.org/10.1006/abio.1996.0292
  • Boneza, M. M., & Niemeyer, E. D. (2018). Industrial Crops & Products Cultivar a ff ects the phenolic composition and antioxidant properties of commercially available lemon balm ( Melissa o ffi cinalis L .) varieties. Industrial Crops & Products, 112(October 2017), 783–789. https://doi.org/10.1016/j.indcrop.2018.01.003
  • Farooq, A., Muhammad, A., Ijaz, H. A., & Muhammad, S. (2009). Antioxidant and antimicrobial activities of essential oil and extracts of fennel ( Foeniculum vulgare Mill .) seeds from Pakistan Farooq Anwar a *, Muhammad Ali a , b , Abdullah Ijaz Hussain a and, (April), 170–176. https://doi.org/10.1002/ffj.1929
  • Generalic, I., Skroza, D., Surjak, J., Mozina, S. S., Ljubenkov, I., Katalinic, A., … Katalinic, V. (2012). Seasonal Variations of Phenolic Compounds and Biological Properties in Sage ( Salvia officinalis L .), 9, 441–457.
  • Hasler, C. M. (2002). Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. The Journal of Nutrition, 132(12), 3772–3781. https://doi.org/10.1093/jn/132.12.3772
  • Kamiloglu, S., Capanoglu, E., Yilmaz, O., Duran, A. F., & Boyacioglu, D. (2014). Investigating the antioxidant potential of Turkish herbs and spices. Quality Assurance and Safety of Crops & Foods, 6(2), 151–158.
  • Kenny, O., Smyth, T. J., Hewage, C. M., & Brunton, N. P. (2013). Antioxidant properties and quantitative UPLC-MS analysis of phenolic compounds from extracts of fenugreek ( Trigonella foenum-graecum ) seeds and bitter melon ( Momordica charantia ) fruit. Food Chemistry, 141(4), 4295–4302. https://doi.org/10.1016/j.foodchem.2013.07.016
  • Khaled, M., Ahmed, Z., Abdel-khalek, H. H., & Mostafa, Y. (2017). Journal of Radiation Research and Applied Sciences Evaluation of antibacterial ef fi cacy of anise wastes against some multidrug resistant bacterial isolates. Journal of Radiation Research and Applied Sciences, 10(1), 34–43. https://doi.org/10.1016/j.jrras.2016.11.002
  • Miliauskas, G., Venskutonis, P. R., & Beek, T. A. Van. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts, 85, 231–237. https://doi.org/10.1016/j.foodchem.2003.05.007
  • Patch, C. S., Sullivan, D. R., & Fenech, M. (2006). Health benefits of herbs and spices: Cardiovascular disease. The Medical Journal of Australia, 185(4), S7-9.
  • Patonay, K., Korózs, M., Murányi, Z., & Kónya, E. P. (2017). Polyphenols in northern Hungarian Mentha longifolia ( L .) L . treated with ultrasonic extraction for potential oenological uses, 208–217. https://doi.org/10.3906/tar-1701-61
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Salami, M., Rahimmalek, M., & Ehtemam, M. H. (2016). Inhibitory effect of different fennel ( Foeniculum vulgare ) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chemistry, 213, 196–205. https://doi.org/10.1016/j.foodchem.2016.06.070
  • Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., & Dhaka, N. (2013). Potential applications of antioxidants – A review. Journal of Pharmacy Research, 7(9), 828–835. https://doi.org/10.1016/j.jopr.2013.10.001
  • Singh, R. P., Chidambara Murthy, K. N., & Jayaprakasha, G. K. (2002). Studies on the Antioxidant Activity of Pomegranate (Punica granatum) Peel and Seed Extracts Using in Vitro Models. Journal of Agricultural and Food Chemistry, 50(1), 81–86. https://doi.org/10.1021/jf010865b
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144 LP-158. Retrieved from http://www.ajevonline.org/content/16/3/144.abstract
  • Tang, K. S. C., Konczak, I., & Zhao, J. (2016). Identification and quantification of phenolics in Australian native mint ( Mentha australis R . Br .). Food Chemistry, 192, 698–705. https://doi.org/10.1016/j.foodchem.2015.07.032
  • Vallverdú-queralt, A., Regueiro, J., Martínez-huélamo, M., Fernando, J., Alvarenga, R., Neto, L., & Lamuela-raventos, R. M. (2014). A comprehensive study on the phenolic profile of widely used culinary herbs and spices : Rosemary , thyme , oregano , cinnamon , cumin and bay, 154, 299–307. https://doi.org/10.1016/j.foodchem.2013.12.106