Epoksi Polimerlerin Gama Işını Zırhlama Performanslarına PbO ve BaO Katkılarının Etkisinin Deneysel Olarak Karşılaştırılması.

Bu çalışma, iki farklı katkı malzemesi (baryum oksit ve kurşun oksit) kullanılarak hazırlanan epoksi kompozitlerinin gama ışını zırhlama yeteneklerini araştırmaya yöneliktir. Düşük ağırlıklı radyasyon zırhlayıcısı elde etmek için Epoksi / PbO ve Epoksi / BaO kompozitler, ağırlık olarak % 10, % 20 ve % 40 katkı malzemeleri kullanılarak üretilmiştir. Hazırlanan numunelerin ağırlığı kurşun, çelik, beton vb. bazı geleneksel zırhlayıcı malzemelerle karşılaştırılmıştır. Saf epoksi ve kompozitlerin gama ışını zırhlama performansı deneysel olarak NaI (Tl) detektörü kullanılarak ölçülmüştür. Deneylerde, gama ışını kaynağı olarak 81 keV ve 356 keV enerjili Ba-133 nokta radyoaktif kaynağı kullanılmıştır. Kompozitlerin gama ışını zırhlama parametreleri olarak kütle azaltma katsayısı, yarı kalınlık değeri, onda bir kalınlık değeri ve ortalama serbest yol mesafesi dikkate alınmıştır. PbO ve BaO ilaveli epoksi kompozitlerinin ilgili parametrelerinin sonuçları karşılaştırıldığında, PbO katkılı epoksi kompozitinin gama ışını zırhlama performansının, BaO katkısıyla da elde edilebileceğini ortaya çıkarmıştır. Bununla birlikte, PbO katkılı epoksi ile aynı performansı elde etmek için, epoksiye PbO’ya göre iki katı kadar fazla BaO katkılanmalıdır. Öte yandan, ağırlıkça % 40 BaO katkılı epoksi kompozitin, 81 keV ve 356 keV enerjili fotonlar için çelik, beton ve Gd2O3 nanoparçacık katkılanmış epoksi kompozitlerden daha iyi bir radyasyon zırhlama performansı sergilediği tespit edilmiştir. Bu nedenle, bir epoksi/BaO kompoziti kullanılarak düşük ağırlıklı ve toksik olmayan bir gama ışını zırhlama malzemesi üretilebilir.

Experimental Comparison of PbO and BaO Addition Effect on Gamma Ray Shielding Performance of Epoxy Polymer

This study was devoted to investigate the gamma ray shielding abilities of the epoxy composites prepared by using two different reinforcing materials: barium oxide and lead oxide.  The Epoxy/PbO and Epoxy/BaO composites were produced by using 10 wt.%, 20 wt.%, and 40 wt.% reinforcing materials to obtain low weight radiation shielders. The heaviness of the samples were compared with some conventional shielding materials such as lead, steel, concrete etc. The gamma ray shielding performance of the pure epoxy and the composites were measured experimentally by using NaI(Tl) detector. In the experiments, Ba-133 point radioactive source was also utilized as a gamma ray source with the 81 keV and 356 keV energies. As the gamma ray shielding parameters of the composites, the mass attenuation coefficient, half layer value and tenth layer value thicknesses and mean free path distance were considered. After comparison of the related parameters of the PbO and BaO added epoxy composites, it was revealed that the gamma radiation shielding performance of the PbO added epoxy composite can also be obtained by adding BaO to the epoxy. However, to achieve the same performance, BaO should be added twice as much as the PbO additive percentage. On the other hand, it was determined that 40 wt.% BaO added epoxy composite exhibits a better radiation shielding performance than steel, concrete and Gd2O3 nanoparticle added epoxy composite for the photons with 81 keV and 356 keV energies. Thus, a lightweight and non-toxic gamma-ray shielding material can be produced by using an epoxy/BaO composite.

___

  • Azman, N. N., Siddiqui, S., Hart, R., & Low, I.-M. (2013). Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites. Applied Radiation and Isotopes, 71(1), 62-67.
  • Büyükyıldız, M., Taşdelen, M., Karabul, Y., Çağlar, M., İçelli, O., & Boydaş, E. (2018). Measurement of photon interaction parameters of high-performance polymers and their composites. Radiation Effects and Defects in Solids, 173(5-6), 474-488.
  • Eisenbud, M., & Gesell, T. F. (1997). Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources: Elsevier.
  • Hou, Y., Li, M., Gu, Y., Yang, Z., Li, R., & Zhang, Z. (2018). Gamma ray shielding property of tungsten powder modified continuous basalt Fiber reinforced epoxy matrix composites. Polymer Composites, 39(S4), E2106-E2115.
  • Hussain, R., Haq, Z.-U., & Mohammad, D. (1997). A study of the shielding properties of poly ethylene glycol-lead oxide composite. J Islamic Acad Sci, 10(3), 81-84. Kucuk, N., Cakir, M., & Isitman, N. A. (2012). Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiation protection dosimetry, 153(1), 127-134.
  • Li, R., Gu, Y., Wang, Y., Yang, Z., Li, M., & Zhang, Z. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 035035.
  • Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M., & Zhang, Z. (2017). Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 143, 67-74.
  • Ms, A., Mondal, A., & Tripathi, R. (2010). Radiation Protection Manual. Sayyed, M. (2016). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., . . . Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(1), 1-6.
  • Singh, N., Singh, K. J., Singh, K., & Singh, H. (2006). Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiation Measurements, 41(1), 84-88.
  • Singh, S., Kumar, A., Singh, D., Thind, K. S., & Mudahar, G. S. (2008). Barium–borate–flyash glasses: as radiation shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146.
  • Singh, V. P., Medhat, M., & Shirmardi, S. (2015). Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiation Physics and Chemistry, 106, 255-260.
  • Soylu, H., Lambrecht, F. Y., & Ersöz, O. (2015). Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry, 305(2), 529-534. Tekin, H. O., & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(7), 95.
  • Kucuk, N., Cakir, M., & Isitman, N. A. (2012). Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiation protection dosimetry, 153(1), 127-134
  • Sayyed, M. (2016). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Tekin, H. O., & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(7), 95.
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç