Su hızının su kalitesi değişimi üzerindeki etkisine yönelik nicel çalışma

Atmosferik yeniden havalandırma süreci, nehirlerde ve akarsularda çözünmüş oksijen (DO) konsantrasyonlarını etkileyen organik maddenin bozunmasında ve kendi kendini saflaştırma süreçlerinde kilit bir rol oynar. Ayrıca, su kalitesi (WQ) süreçleri büyük ölçüde akış hızı koşullarına bağlı olabilir. Burada, yüksek yeniden havalandırma oranları, yüksek akış hızı ile pozitif olarak ilişkilidir. Bu nedenle, mevcut çalışma, DO konsantrasyonunda ve biyokimyasal oksijen ihtiyacında (BOD5) yeniden havalandırma işlemi ile akış hızının rolü hakkında derin görüşler bildirmektedir. Bu çalışma, Mısır'daki en büyük tarımsal drenaj suyu yeniden kullanım projesi olan El-Salam Kanalı boyunca uygulandı. Kanal boyunca hidrodinamik (HD) özellikler ve WQ parametreleri (DO ve BOD5), tek boyutlu bir HD ve WQ modeli (MIKE 11) kullanılarak simüle edilmiştir. Simüle edilen sonuçlar, kanalın El-Serw ve Bahr Hadous drenleri ile karıştırıldıktan sonra El-Salam Kanalı'na doğru bozulduğunu gösterdi. Yeniden havalandırma hızlarının simülasyon sonuçları üzerinde, akış hızı ve WQ değerleri ile istatistiksel regresyon uydurma çizgisi ve Pearson korelasyon analizi yapılmış ve önemli bir korelasyona işaret edilmiştir. Buna göre, su hızı, WQ değişimini açıklamak için kilit bir faktör olarak dikkate alınmalıdır.

Quantitative study for the effect of water velocity on water quality change

Atmospheric reaeration process plays a key role in degradation of organic matter and self-purification processes affecting dissolved oxygen (DO) concentrations in rivers and streams. Moreover, water quality (WQ) processes can be highly dependent on flow velocity conditions. Where, highly reaeration rates are positively correlated with high flow velocity. Therefore, the present work reports deep insights on the role of flow velocity with reaeration process in the concentration of DO and biochemical oxygen demand (BOD5). This study was applied along the largest agricultural drainage water reuse project, El-Salam Canal in Egypt. The hydrodynamic (HD) characteristics and WQ parameters (DO and BOD5) along the canal were simulated using a one-dimensional HD and WQ model (MIKE 11). The simulated results indicated that the canal was deteriorated towards El-Salam Canal after mixing with El-Serw and Bahr Hadous drains. Statistical regression fitted line and Pearson correlation analysis, were performed on the simulation results of the reaeration rates with flow velocity and WQ values, indicating a significant correlation. Accordingly, water velocity should be taken into account as a key factor for describing the WQ change.

___

  • W. Zhi et al., “From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale?,” Environ. Sci. Technol., vol. 55, no. 4, pp. 2357–2368, 2021.
  • J. Wu and X. Yu, “Numerical Investigation of Dissolved Oxygen Transportation through a Coupled SWE and Streeter–Phelps Model,” Math. Probl. Eng., vol. 2021, 2021.
  • B. Huang et al., “Quantitative study of degradation coefficient of pollutant against the flow velocity,” J. Hydrodyn. Ser. B, vol. 29, no. 1, pp. 118–123, 2017.
  • Z.-G. Ji, Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. John Wiley & Sons, 2017.
  • W. Assar, M. G. Ibrahim, W. Mahmod, and M. Fujii, “Assessing the agricultural drainage water with water quality indices in the El-Salam Canal mega project, Egypt,” Water, vol. 11, no. 5, p. 1013, 2019.
  • J. Liang, Q. Yang, T. Sun, J. D. Martin, H. Sun, and L. Li, “MIKE 11 model-based water quality model as a tool for the evaluation of water quality management plans,” J. Water Supply Res. Technol., vol. 64, no. 6, pp. 708–718, 2015.
  • W. Assar, M. G. Ibrahim, W. Mahmod, A. Allam, A. Tawfik, and C. Yoshimura, “Effect of Water Shortage and Pollution of Irrigation Water on Water Reuse for Irrigation in the Nile Delta,” J. Irrig. Drain. Eng., vol. 146, no. 2, p. 5019013, 2020.
  • H. A. A. El Gammal, “Water quality interventions case study: El-Salam Canal area,” Adv. Environ. Biol., vol. 10, no. 3, pp. 35–45, 2016.
  • DHI, “MIKE 11: a modeling system for rivers and channels. Reference manual.” Danish Hydraulic Institute, Hørsholm, Denmark, 2008, 2012.
  • A. Shakibaeinia, Y. B. Dibike, S. Kashyap, T. D. Prowse, and I. G. Droppo, “A numerical framework for modelling sediment and chemical constituents transport in the Lower Athabasca River,” J. soils sediments, vol. 17, no. 4, pp. 1140–1159, 2017.
  • M. Salari, E. Teymouri, and Z. Nassaj, “Application of an Artificial Neural Network Model for estimating of Water Quality Parameters in the Karun River, Iran,” J. Environ. Treat. Tech., vol. 9, no. 4, pp. 720–727, 2021.
  • A. Hafez, M. Khedr, K. El-Katib, H. G. Alla, and S. Elmanharawy, “El-Salaam Canal project, Sinai II. Chemical water quality investigations,” Desalination, vol. 227, no. 1–3, pp. 274–285, 2008.
  • A. A. Othman, S. A. Rabeh, M. Fayez, M. Monib, and N. A. Hegazi, “El-Salam canal is a potential project reusing the Nile Delta drainage water for Sinai desert agriculture: Microbial and chemical water quality,” J. Adv. Res., vol. 3, no. 2, pp. 99–108, 2012.
  • A. Hafez, M. Khedr, K. El-Katib, and H. Gadallah, “Pilot scale investigation of low pressure nanofiltration and reverse osmosis membrane techniques for the treatment of El-Salaam canal water, Sinai, Egypt,” Desalin. water Treat., vol. 8, no. 1–3, pp. 279–285, 2009.
  • J. J. Mocuba, “Dissolved oxygen and biochemical oxygen demand in the waters close to the Quelimane sewage discharge.” The University of Bergen, 2010.
  • C. Gualtieri, P. Gualtieri, and G. P. Doria, “Dimensional analysis of reaeration rate in streams,” J. Environ. Eng., vol. 128, no. 1, pp. 12–18, 2002.