Bizmut Oksit'in Gama Işını Koruma Parametrelerindeki Değişime Kurşun Oksit Etkisi

Bu çalışmanın amacı, bizmut oksidin (Bi2O3) gama ışını radyasyonu absorpsiyon özelliklerini araştırmak ve kurşun oksit (PbO) katkısının Bi2O3'ün zırhlamadaki etkisini belirlemektir. Bu nedenle Bi2O3, PbO ve %50 Bi2O3-%50 PbO. için kütle zayıflama katsayısı (MAC), doğrusal zayıflama katsayısı (LAC), yarı değer katmanı (HVL), onuncu değer katmanı (TVL) ve ortalama serbest yol (mfp) gibi radyasyon absorpsiyon parametreleri teorik olarak hesaplanmıştır. Tüm parametre sonuçları, 511 keV, 662 keV, 1173 keV, 1274 keV ve 1332 keV enerji aralığında GATE/Geant4 (Geant4 Application for Tomographic Emission) simülasyon kodu kullanılarak elde edilmiştir. Ayrıca XCOM programı kullanılarak 1 keV ile 1 GeV enerji aralığında gama ışını absorpsiyon parametreleri hesaplanmıştır. Böylece, simüle edilmiş GATE/Geant4 sonuçlarının doğruluğu XCOM programı kullanılarak test edilmiştir. Diğer yandan zırhlama malzemelerinin tüm parametrelerinin teorik olarak hesaplanan değerleri birbirleri ile karşılaştırılmıştır. Bu sonuçlar, GATE/Geant4 sonuçlarının XCOM sonuçlarıyla iyi bir uyum içinde olduğunu göstermektedir.

The Effect of Lead Oxide on the Change in Gamma Ray Protection Parameters of Bismuth Oxide

The aim of this study is to investigate the gamma ray radiation absorption properties of bismuth oxide (Bi2O3), and determine the effect of lead oxide (PbO) additive in the shielding of Bi2O3. For this reason, the radiation absorption parameters such as mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), half value layer (HVL), tenth value layer (TVL) and mean free path (mfp) were calculated theoretically for the Bi2O3, PbO, and 50% Bi2O3-50%PbO. The all parameters results were obtained by using the GATE/Geant4 (Geant4 Application for Tomographic Emission) simulation code in energy range 511 keV, 662 keV, 1173 keV, 1274 keV, and 1332 keV. Also, the gamma ray protection parameters were calculated by using the XCOM program in the energy range from 1 keV to 1 GeV. Thus, the simulated the GATE/Geant4 results were tested for correctness using the XCOM program. On the other hand, theoretically were calculated values of all parameters of the shielding materials were compared with each other. These results indicate that the GATE/Geant4 results were in good agreement with the XCOM results.

___

  • N. Chanthima, J. Kaewkhao, “Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV”, Ann. Nucl. Energy, vol. 55, pp. 23-28, 2013.
  • C. Eke, O. Agar, C. Segebade, I. Boztosun, “Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV”, Radiochim. Acta, vol. 105 (10), pp. 851, 2017.
  • I. Akkurt, H. Akyildirim, F. Karipçin, B. Mavi,“Chemical corrosion on gamma-ray attenuation properties of barite concrete”, Journal of Saudi Chemical Society, vol. 16(2), pp. 199–202, 2012.
  • S. Özavci, B. Cetin, “Radiation shielding properties of mortars and plasters used in historical buildings”, Acta Physica Polonica A, vol. 132(3), pp. 986–987, 2017.
  • O. Agar, “Study on Gamma Ray Shielding Performance of Concretes Doped With Natural Sepiolite Mineral”, Radiochimica Acta, vol. 106(2), 2018.
  • I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, “Gamma-ray shielding properties of concrete including barite at different energies”, Progress in Nuclear Energy, vol. 52(7), pp. 620–623, 2010.
  • V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, “Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation”, Vacuum, vol. 119, pp. 284-288, 2015.
  • S. Özavci, B. Çetin, “Determination of radiation attenuation coefficients in concretes containing different wastes”, Acta Physica Polonica A, vol. 130(1), pp. 316–317, 2016.
  • B. Mavi, “Experimental investigation of γ-ray attenuation coefficients for granites”, Annals of Nuclear Energy, vol. 44, pp. 22–25, 2012.
  • T. Singh, U. Kaur, P.S. Singh, Photon energy absorption parameters for some polymers, Ann. Nucl. Energy, vol. 37(3) pp. 422–427., 2010.
  • H. Gülbiçim, M. Ç. Tufan, M. N. Türkan, “The investigation of vermiculite as an alternating shielding material for gamma rays”, vol. 130, pp. 112-117, 2017.
  • O. Agar, “Investigation on Gamma Radiation Shielding Behaviour of CdO–WO3–TeO2 Glasses from 0.015 to 10 MeV”, Cumhuriyet Sci. J., vol. 39-4, 983-990, 2018.
  • H. Singh, K. Singh, L. Gerward, K. Singh, H.S. Sahota, R. Nathuram, “ZnO–PbO–B2O3glasses as gamma-ray shielding materials”, Nucl. Instrum. Methods B, vol. 207, pp. 257–262, 2003.
  • S.R. Manohara, S.M. Hanagodimath, L. Gerward, K.C. Mittal, Exposure buildup factors for heavy metal oxide glass: a radiation shield, J. Korean Phys. Soc. Vol. 59(2), pp. 2039–2042, 2011.
  • I. Akkurt, A. Alomari, I. Yuksek, I. Ekmekci, “ Medical radiation shielding in terms of effective atomic numbers and electron densities of some glasses”, Radiation Physics and Chemistr, 110767, 2023.
  • M. Kurudirek, “Heavy metal borate glasses: potential use for radiation shielding”, J. Alloys. Compd., vol. 727 pp. 1227–1236, 2017.
  • M.I. Sayyed, “Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions”, Can. J. Phys. Vol. 94(11), pp. 1133–1137, 2016.
  • S.A. Issa, Y.B. Saddeek, H.O. Tekin, M. I. Sayyed, “Investigations of radiation shielding and elastic properties of PbO–SiO2–B2O3–Na2O glasses using Monte Carlo method”, Curr. Appl. Phys., 2018.
  • N. Chanthima, J. Kaewkhao, “Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV”, Ann. Nucl. Energy, vol. 55, pp. 23-28, 2013.
  • J. Kaewkhao, “Interaction of 662 keV gamma-rays with bismuth-based glass matrices”, J. Korean Phys. Soc. Vol. 59(2), pp. 661–665, 2011.
  • J. Kaewkhao, P. Limsuwan, “Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV”, Nucl. Instrum. Methods Phys. Res. Sect. A, vol. 619(1–3), pp. 295–297, 2010.
  • T. Maeder, “Review of Bi2O3-Based Glasses for Electronics and Related Applications” International Materials Reviews, vol. 58(1), 2013.
  • M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, “XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8. XGAM”. https://physics.nist.gov/cgi-bin/Xcom/ xcom2 (accessed:20. July.2022).
  • L. Gerward, N.Guilbert, K.B. Jensen, H. Levring, “WinXCom—a program for calculation X-ray attenuation coefficients”. Radiation Physics and Chemistry 71, 653–654, 2004.
  • SA. Feller, WJ. Dell, PJ. Bray,1982. “10B NMR studies of lithium borate glasses”. J Non-Cryst Solids, vol. 51, pp.