Sinüzoidal Uzaysal Kısma Sahip Kısa Atımlı Lazer Işığının Meydana Getirdiği Fotoakustik Sinyalin Analitik Olarak İfadesi

Fotoakustik sinyal lazer ışığının atım süresi, enerjisi, dalgaboyu ve atım sıklığı gibi parametrelere bağlıdır. Bu parametrelerinfotoakustik sinyal üzerindeki etkileri deneyler ile test edilebilmektedir. Bununla birlikte bu etkiler teorik yaklaşımlar aracılığıyla lazerteknolojilerine paralel olarak araştırılabilir. Bu çalışmada, Fourier dönüşümü yöntemi kullanılarak fotoakustik dalga denkleminin çözümleri oldukça kısa dalga boylu lazer ışığı tarafından uyarılmış küresel şekle sahip bir absorbe edici madde için elde edilmiştir.Darbeli lazerin uzaysal ve zamansal kısımları sırasıyla sinc ve Gaussian fonksiyonları ile modellenmiştir. Uzaysal ışık modülatörükullanılarak deneysel olarak elde edilmiş olan darbeli lazerin radyal kısmı sinc fonkyonu ile gerçeğe yakın olarak modellenmektedir.Ayrıca, darbeli lazerler lineer olmayan etkiler meydana getirirler. Lineer olmayan bu mekanizma fotoakustik görüntüleme tekniğindebir takım avantajlara sahiptir. Darbeli lazerler merkezi atım bölgesinde sinüzoidal bir değişime sahiptir. Bundan dolayı bu çalışmadalazerin uzaysal kısmı sinc fonksiyonu ile tasvir edilmiştir. Lazer parametrelerini (atım süresi ve dalga genişliği) içeren ayrıntılı bir fotoakustik dalga (sinyal) ifadesi analitik olarak elde edilmiştir. Fotoakustik sinyal çeşitli dedektör pozisyonlarında (absorbe edicimadde dışında) zamana bağlı olarak ifade edilmiştir. Ayrıca, yapılan analiz sonucunda fotoakustik sinyal ile lazer parametreleri arasındabir korelasyon olduğu saptanmıştır. Sonuç olarak lazer parametrelerinin nicel olarak belirlenmesine imkan veren bu çalışma fotoakustikalanındaki uygulamalar için faydalı olabilir.

An Analytical Expression of the Photoacoustic Signal for A PulsedLaser with A Sinusoidal Radial Profile

Photoacoustic signal depends on several laser factors, particularly the pulse duration, energy, wavelength, beam-width and repetitionrate of the pulsed laser. Although these dependencies are well tested through experiments, they can also be investigated via theoreticalapproaches for the research into photoacoustic signal generation in parallel to advances in laser technologies. In this study, thephotoacustic signal is presented analytically by solving the photoacoustic wave equation for an optical absorber heated up by a pulsedlaser. The spatial and temporal parts of the pulsed laser are modeled by a sampling (sinc) function and a Gaussian function, respectively.The radial profile obtained experimentally by using a spatial light modulator can be modeled accurately with a sampling function. Pulsedlasers can lead to nonlinear effects. This nonlinear mechanism has various advantageous for the photoacoustic imaging. These short pulsed lasers have a close-to-sinusoidal variation in the central pulse region so that the spatial part of the laser is modeled by a samplingfunction in this work. For the photoacoustic wave, a detailed expression is obtained analytically in terms of the pulse duration and beam width. The photoacoustic signal is observed in terms of time for various detector positions. Moreover, a detailed analysis is conductedto obtain a correlation between the photoacoustic signal and the laser factors. Therefore, the resulting quantification of the physical laserfactors can offer a useful theoretical guide for the applications of photoacoustics. The sampling modeling presented by this study canalso be helpful for the understanding of the nonlinear mechanism in photoacoustics.

___

  • Audo, F., Boscolo, S., Fatome, J., Kibler, B., & Finot, C. (2017). “Nonlinear Spectrum Broadening Cancellation by Sinusoidal Phase Modulation." Optics Letters, 42(15), 2902-2905.
  • Bai, W., & Diebold, G. J. (2018). “Moving Photoacoustic Sources: Acoustic Waveforms in One, Two, and Three Dimensions and Application to Trace Gas Detection." Physical Review E 125, 060902.
  • Beard, P. (2011). “Biomedical Photoacoustic Imaging." Interface Focus 1, 602-631.
  • Bell, A. G. (1880). “On the Production and Reproduction of Sound by Light." American Journal of Science 118, 305-324.
  • Calasso, I. G., Craig, W., & Diebold, G. J. (2001). “Photoacoustic Point Source." Physical Review Letters 86, 3550-3.
  • Diebold, G. J., & Westervelt, J. (1988). “The Photoacoustic Effect Generated by A Spherical Droplet in A Fluid." Journal of Acoustical Society of America 84, 2245.
  • Diebold, G. J., Sun, T., & Khan, M. I. (1991). “Photoacoustic Monopole Radiation in One, Two, and Three Dimensions." Physical Review Letters 67, 3384-3387.
  • Gao, R., Xu, Z., Ren, Y., Song, L., & Liu, C. (2021). “Nonlinear Mechanisms in photoacoustics: Powerful Tools in Photoacoustic Imaging." Photoacoustics, 100243.
  • Gusev, V., & Chigarev, N. (2010). “Nonlinear Frequency-mixing Photoacoustic Imaging of A Crack: Theory." Journal of Applied Physics, 107(12), 124905.
  • Hoelen, C. G. A., de Mul, F. F. M., Pongers, R., & Dekker, A. (1998). “Three-dimensional Photoacoustic Imaging of Blood Vessels in Tissue." Optics Letters 23, 648-650.
  • Hutchins, D., & Tam, A. C. (1986). “Pulsed Photoacoustic Materials Characterization." IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control 33, 429- 449.
  • Kozhushko, V., Khokhlova, T., Zharinov, A., Pelivanov, I., Solomatin, V., & Karabutov, A. (2004). “Focused Array Transducer for Two-dimensional Optoacoustic Tomography." Journal of Acoustical Society of America 116, 1498.
  • Lai, H. M., & Young, K. (1982). “Theory of the Pulsed Optoacoustic Technique." Journal of Acoustical Society of America 72, 2000.
  • Lin, L., Hu, P., Shi, J., Appleton, C. M., Maslov, K., Li, L., Zhang, R., & Wang, L. V. (2018); “Single-breath-hold photoacoustic computed tomography of the breast.” Nature Communications 9(1), 2352.
  • Morse, P. M., & Feshbach, H. (1953). Methods of Theoretical Physics, Part I New York: McGraw- Hill.
  • Ripoll, R., & Ntziachristos, N. (2005). “Quantitative Point Source Photoacoustic Inversion Formulas for Scattering and Absorbing Media." Physical Review E 71, 031912.
  • Sigrist, M. W., & Kneubühl, F. K. (1978). “Laser-generated Stress Waves in Liquids." Journal of Acoustical Society of America 64, 1652.
  • Tabaru, T. E., Hayber, S. E., & Saracoglu, O. G. (2018). “Frequency Domain Analysis of Laser and Acoustic Pressure Parameters in Photoacoustic Wave Equation for Acoustic Pressure Sensor Designs." Current Optics and Photonics 2, 250-260.
  • Tabaru, T. E., Hayber, S. E., Keser, S., & Saracoglu, O. G. (2019). “Spectral Analysis for Photoacoustic Pressure Sensor Designs: Theoretical Model Improvement and Experimental Validation." Sensors and Actuators A: Physical 287, 76-83.
  • Tam, A. C. (1986). “Applications of Photoacoustic Sensing Techniques." Reviews of Modern Physics 58, 381-431.
  • Uluc, N., Unlu, M. B., Gulsen, G., & Erkol, H. (2018). “Extended Photoacoustic Transport Model for Characterization of Red Blood Cell Morphology in Microchannel Flow." Biomedical Optics Express 9, 2785-2809.
  • Wang, L. V. (2004). “Ultrasound-mediated Biophotonic Imaging: A Review of Acousto-optical Tomography and Photoacoustic Tomography." Disease Markers 19, 123-38.
  • Wang, L. H., & Wu, H. (2007). Biomedical Optics: Principles and Imaging. NJ: Wiley.
  • Wang, L. V. (2008). “Tutorial on Photoacoustic Microscopy and Computed Tomography." IEEE Journal of Selected Topics in Quantum Electronics 14, 171-179.
  • Wang, X., Pang, Y., Ku, G., Xie, X., Stoica, G., & Wang, L. H. V. (2003). “Noninvasive Laser induced Photoacoustic Tomography for Structural and Functional in Vivo Imaging of the Brain." Nature Biotechnology 21, 803-806.
  • Wang, Y., Xie, X., Wang, X., Ku, G., Gill, K. L., O'Neal, D. P., Stoica, G., & Wang, L. H. V. (2004). “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain." Nano Letters 4, 1689-1692.
  • Xu, M., & Wang, L. V. (2006). “Photoacoustic imaging in biomedicine." Review of Scientific Instruments 77, 041101.
  • Zhang, J. M., Anastasio, A., Rivi_ere, P. J., & Wang, L. H. (2009). “Effects of Different Imaging Models on Least-squares Image Reconstruction Accuracy in Photoacoustic Tomography." IEEE Transactions on Medical Imaging 28, 1781-1790.