Mn Katkılı Grafen Yüzey Üzerinde $NH_3$ Olmadan NO’nun Katalitikİndirgenmesi: Bir Yoğunluk Fonksiyonel Teorisi Çalışması

Nitrojen oksit (NO) fosil yakıtların yanması sonucunda ortaya çıkan önemli bir hava kirleticisidir. Katalitik olarak seçici katalizörlerüzerinde NO indirgenme reaksiyonları yoluyla onun zararlı etkileri önemli ölçütlerde azaltılabilir. Mn katkılı grafen sistemler deneyselolarak sentezlenebilir ve nispeten az sayıda Mn (manganez) atomu kullanımı nedeniyle ilerleyen zaman içerisinde tek atom kristalyüzeylerine göre çok daha düşük maliyetli olması ön görülmektedir. Bu çalışmada Mn katkılı grafen yüzey üzerinde NO indirgenmereaksiyonu yoğunluk fonksiyonel teorisi yoluyla incelenmiştir. Mn katkılı grafen yüzeyin yapısal özellikleri bader yük analizi veelektron yoğunluğu farkı haritası ile analiz edildi. NO indirgenmesi için, NO moleküllerinin farklı adsorpsiyon durumlarına göre ikifarklı reaksiyon yolu düşünüldü. Bizim hesaplama sonuçlarımız göstermiştir ki, birinci reaksiyonu yolu üzerinde reaksiyon 0.27 eV ve0.59 eV enerji bariyerleri ile iki geçiş durumu sonunda gerçekleşirken, diğer reaksiyon yolu 0.42 eV enerji bariyeri ile direkt olarakgerçekleşmektedir. Bu sonuçlar, her iki reaksiyon yolu üzerinde Mn katkılı grafen katalizörün yüksek katalitik aktiviteye sahip olduğunugöstermiştir. Bu bilgiler, NO’nun uzaklaştırılması için grafen tabanlı malzemeler üzerinde farklı stratejiler geliştirmek için kullanılabilir.

Catalytic Reduction Of NO Without $NH_3$ On Mn Embedded Graphene: A Density Of Functional Theory Study

Nitrogen oxide (NO) is an important air pollutant that occurs as a result of burning fossil fuels. Through NO reduction reactions oncatalytically selective catalysts, its detrimental effects can be significantly reduced. Mn-doped graphene systems can be synthesizedexperimentally, and due to the use of relatively few Mn (manganese) atoms, it is anticipated that they will cost much less than singleatom crystal surfaces over time. In this study, NO reduction reaction on Mn doped graphene surface was investigated by densityfunctional theory. The structural properties of the Mn-doped graphene surface were analyzed by bader charge analysis and electrondensity difference map. For the reduction of NO, two different reaction paths were considered according to the different adsorptionconditions of NO molecules. Our calculation results showed that, on the first reaction path, the reaction takes place at the end of twotransition states with energy barriers of 0.27 eV and 0.59 eV, while the other reaction path takes place directly with an energy barrierof 0.42 eV. These results showed that the Mn doped graphene catalyst has high catalytic activity on both reaction paths. This informationcan be used to develop different strategies on graphene-based materials for NO removal.

___

  • Akça, A., Karaman, O., Karaman, C. (2021). Mechanistic Insights into Catalytic Reduction of N2O by CO over Cu-Embedded Graphene: A Density Functional Theory Perspective. ECS Journal of Solid State Science and Technology, 10(4):041003.
  • Chun, H. J., Apaja, V., Clayborne, A., Honkala, K., Greeley, J., (2017). Atomistic insights into nitrogen-cycle electrochemistry: A combined DFT and kinetic Monte Carlo analysis of NO electrochemical reduction on Pt (100). ACS Catalysis, 7(6):3869-3882.
  • Esrafili, M.D., (2018). NO reduction by CO molecule over Sidoped boron nitride nanosheet: a dispersion-corrected DFT study. Chemical Physics Letters, 695:131-137.
  • Esrafili, M.D., Asadollahi, S., Heydari, S., (2019). A DFT study on NO reduction to N2O using Al-and P-doped hexagonal boron nitride nanosheets. Journal of Molecular Graphics and Modelling, 89:41-49.
  • Esrafili, M.D., Saeidi, N., (2017). Catalytic reduction of NO by CO molecules over Ni-doped graphene: a DFT investigation. New Journal of Chemistry, 41(21):13149-13155.
  • Impeng, S., Junkaew, A., Maitarad, P., Kungwan, N., Zhang, D., Shi, L., Namuangruk, S., (2019). A MnN4 moiety embedded graphene as a magnetic gas sensor for CO detection: A first principle study. Applied Surface Science, 473:820-827.
  • Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., Meng, X., (2017). A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: catalysts, mechanisms, kinetics and DFT calculations. Catalysts, 7(7):199.
  • Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., Baroni, S., (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46):465901.
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Wentzcovitch, R.M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39):395502.
  • Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15):154104.
  • Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1):1-17.
  • Henkelman, G., Uberuaga, B. P., Jónsson, H., (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics, 113(22):9901-9904.
  • Huai, L. Y., He, C. Z., Wang, H., Wen, H., Yi, W. C., & Liu, J. Y., (2015). NO dissociation and reduction by H2 on Pd (1 1 1): A first-principles study. Journal of Catalysis, 322:73-83.
  • Jiang, Q., Zhang, J., Ao, Z., Huang, H., He, H., Wu, Y., (2018). First principles study on the CO oxidation on Mn-embedded divacancy graphene. Frontiers in chemistry, 6:187.
  • Jónsson, H., Mills, G., Jacobsen, K.W., (1998). Nudged elastic band method for finding minimum energy paths of transitions.
  • Karaman, C., Bayram, E., Karaman, O., & Aktaş, Z. (2020). Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. Journal of Electroanalytical Chemistry, 868, 114197.
  • Karaman, C., Aktaş, Z., Bayram, E., Karaman, O., & Kızıl, Ç. (2020). Correlation between the Molecular Structure of Reducing Agent and pH of Graphene Oxide Dispersion on the Formation of 3D-Graphene Networks. ECS Journal of Solid State Science and Technology, 9(7), 071003.
  • Karaman, C. (2021). Orange Peel Derived‐Nitrogen and Sulfur Co‐doped Carbon Dots: a Nano‐booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks. Electroanalysis, 33, 1356-1369.
  • Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., Nieminen, R.M., (2009). Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Physical review letters, 102(12):126807.
  • Kresse, G., Joubert, D., (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3):1758.
  • Lu, Y.H., Zhou, M., Zhang, C., Feng, Y.P., (2009). Metalembedded graphene: a possible catalyst with high activity. The Journal of Physical Chemistry C, 113(47):20156-20160.
  • Luo, M., Liang, Z., Chen, M., Peera, S.G., Liu, C., Yang, H., Liang, T. (2020). Catalytic oxidation mechanisms of carbon monoxide over single-and double-vacancy Mn-embedded graphene. New Journal of Chemistry, 44(22):9402-9410.
  • Maitarad, P., Junkaew, A., Promarak, V., Shi, L., Namuangruk, S., (2020). Complete catalytic cycle of NO decomposition on a silicon-doped nitrogen-coordinated graphene: Mechanistic insight from a DFT study. Applied Surface Science, 508:145255.
  • Monkhorst, H.J., Pack, J.D. (1976). Special points for Brillouinzone integrations. Physical review B, 13(12):5188.
  • Özcan, N., Karaman, C., Atar, N., Karaman, O., & Yola, M. L. (2020). A Novel Molecularly Imprinting Biosensor Including Graphene Quantum Dots/Multi-Walled Carbon Nanotubes Composite for Interleukin-6 Detection and Electrochemical Biosensor Validation. ECS Journal of Solid State Science and Technology, 9(12), 121010.
  • Saeidi, N., Esrafili, M. D., Sardroodi, J.J., (2021). NO electrochemical reduction over Si-N4 embedded graphene: A DFT investigation. Applied Surface Science, 544: 148869.
  • Seker, E., Cavataio, J., Gulari, E., Lorpongpaiboon, P., Osuwan, S., (1999). Nitric oxide reduction by propene over silver/alumina and silver–gold/alumina catalysts: effect of preparation methods. Applied Catalysis A: General, 183(1):121-134.
  • Song, E.H., Yan, J.M., Lian, J.S., Jiang, Q., (2012). External electric field catalyzed N2O decomposition on Mn-embedded graphene. The Journal of Physical Chemistry C, 116(38):20342-20348.
  • Taylor, K. C., Schlatter, J.C., (1980). Selective reduction of nitric oxide over noble metals. Journal of Catalysis, 63(1):53-71. Yang, C.K., (2009). A metallic graphene layer adsorbed with lithium. Applied Physics Letters, 94(16):163115.
  • Yang, W., Gao, Z., Liu, X., Ma, C., Ding, X., Yan, W., (2019). Directly catalytic reduction of NO without NH3 by single atom iron catalyst: A DFT calculation. Fuel, 243:262-270.
  • Zhang, X., Xie, M., Wu, H., Lv, X., Zhou, Z., (2020). DFT study of the effect of Ca on NO heterogeneous reduction by char. Fuel, 265:116995.
  • Zhou, M., Lu, Y. H., Cai, Y. Q., Zhang, C., Feng, Y.P., (2011). Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology, 22(38):385502.