Raylı Sistemler için Asenkron Cer Motor Tasarımı ve Performans Analizi

Asenkron motorlar geçmişten günümüze kadar birçok farklı alanda kullanılan; basit yapıları, ucuz maliyetleri ve bakım masraflarının az olması sebebiyle her daim kullanıcı tarafından sıklıkla tercih edilen bir motor tipidir. Sektörde asenkron motorlar kompresör, asansör, yürüyen merdiven, pompa, vinç ve konveyör uygulamaları gibi birçok farklı alanda kullanılmış, raylı sistem uygulamaları da asenkron motorların bu kullanım alanlarından biri olmuştur. Bu çalışmada, daha düşük bir giriş gücüyle daha yüksek bir performans sergileyen, azalan motor işletim maliyetleriyle kullanıcısına ekonomik yönden avantaj sağlayan, yerli ve milli imkânlarla üretilebilecek olan üç fazlı sincap kafesli yüksek verimli bir asenkron cer motorunun tasarımı gerçekleştirilmiştir. Tasarım başlangıcında ilk olarak bir referans asenkron cer motoru belirlenmiştir. Belirlenen referans motor öncelikle bilgisayar destekli tasarım programlarından biri olan ANSYS programı kullanılarak modellenmiştir. Ardından seçilen referans motor için en uygun sac tipi, stator ve rotor parametreleri ile hava aralığı uzunluğunun belirlenip motorda maksimum verim değerine ulaşılabilmesi için tasarım ve analizler gerçekleştirilmiştir. Analizi yapılan her bir tasarımda sadece bir parametre değiştirilmiş ve diğer parametreler sabit tutularak değiştirilen parametrenin motor verimine olan etkisi net bir şekilde gözlemlenmiştir. Sonuç olarak seçilen referans motor ile iyileştirmeler yapılmış nihai motorun analiz çıktıları karşılaştırılmıştır. Elde edilen sonuçlar incelendiğinde asenkron cer motorunda kullanılan sac tipi; motorun stator, rotor ve hava aralığı gibi tasarım parametrelerinde yapılacak iyileştirmeler ile motor veriminin arttırılabileceği görülmüştür. Sonuç olarak, uygulanan tasarım yaklaşımlarıyla yüksek enerji verimliliğine ve düşük motor kayıplarına sahip yeni bir üç fazlı sincap kafesli asenkron cer motoru tasarımı elde edilmiştir.

Induction Traction Motor Design and Performance Analysis for Railways

Induction motors have been used in many different areas from past to present. It has always been one of the most preferred motor types by users due to their simple structure, low price and low maintenance costs. Induction motors have been used in many areas such as compressor, elevator, escalator, pump, crane and conveyor applications in the industry. Railway system applications are also one of these usage areas of induction motors. In this study, a three phase squirrel cage high efficiency induction traction motor, which exhibits a higher performance with a lower input power, provides economic advantages to its user with reduced motor operating costs, and can be produced with domestic and national resources, has been designed. At the beginning of the design, a reference induction traction motor was determined. The determined reference motor was modeled using the ANSYS program, which is one of the computer aided design programs. Designs and analyzes were carried out in order to reach the maximum efficiency value in the motor. The most suitable sheet type, the stator parameters, rotor parameters and the air gap length were determined subsequently. Only one parameter was changed in each analyzed design. And by keeping the other parameters constant, the effect of the changed parameter on the motor efficiency has been clearly observed. As a result, the final motor design were compared with the first determined reference motor design. When the results obtained are examined, it has been seen that the motor efficiency can be increased and losses can be minimized with improvements to be carried out in the design parameters of the motor such as sheet type, stator, rotor and air gap. As a result, a new three phase squirrel cage induction traction motor design with high energy efficiency and low motor losses has been obtained with the applied design approaches.

___

  • Bostanci, E., Moallem, M., Parsapour, A., & Fahimi, B. (2017). Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study. IEEE Transactions on Transportation Electrification, 3(1), 58–75. https://doi.org/10.1109/TTE.2017.2649883
  • Calin, M. D., Georgescu, M., & Lungoci, C. (2012). Influence of the magnetic materials on the behavior of traction motors for vehicle propulsion. 2012 International Conference on Applied and Theoretical Electricity, ICATE 2012 - Proceedings. https://doi.org/10.1109/ICATE.2012.6403417
  • De Pancorbo, S. M., Ugalde, G., Poza, J., & Egea, A. (2015). Comparative study between induction motor and Synchronous Reluctance Motor for electrical railway traction applications. 2015 5th International Conference on Electric Drives Production, EDPC 2015 - Proceedings. https://doi.org/10.1109/EDPC.2015.7323219
  • Enache, S., Campeanu, A., Enache, M. A., Vlad, I., & Popescu, M. (2020). New aspects in optimal design of asynchronous motors used in light railway traction. 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020, 606–611. https://doi.org/10.1109/SPEEDAM48782.2020.9161847
  • Figueiredo, R. (2015). Simulation model for driving dynamics, energy use and power supply. In undefined. Instituto Superior de Engenharia de Lisboa.
  • Gökhan YETGİN, A., Turan, M., & İhsan ÇANAKOĞLU, A. (2012). Asenkron Motorun Boyunduruk ve Diş Boyutlarının Motor Performansına Etkileri. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 027, 79–88. https://dergipark.org.tr/tr/pub/dpufbed/issue/35930/403327
  • Ikeda, R., Yusya, S., & Kondo, K. (2019). Study on design method for increasing power density of induction motors for electric railway vehicle traction. 2019 IEEE International Electric Machines and Drives Conference, IEMDC 2019, 1545–1550. https://doi.org/10.1109/IEMDC.2019.8785087
  • Keskin Arabul, F., Senol, I., & Oner, Y. (2020). Performance Analysis of Axial-Flux Induction Motor with Skewed Rotor. Energies, 13(19), 4991. https://doi.org/10.3390/EN13194991
  • Kobelev, A., Rozanov, D., & Makarov, L. (2020, October 4). Performance Analysis of Traction Induction Motors of Various Designs for Low-Floor Light Rail Vehicles. 2020 11th International Conference on Electrical Power Drive Systems, ICEPDS 2020 - Proceedings. https://doi.org/10.1109/ICEPDS47235.2020.9249357
  • Kondo, M., Miyabe, M., Ebizuka, R., & Hanaoka, K. (2016). Design and Efficiency Evaluation of a High-Efficiency Induction Motor for Railway Traction. Electrical Engineering in Japan, 194(2), 15–23. https://doi.org/10.1002/EEJ.22771
  • Koushan, S. (2020). High power density variable speed traction motor [Middle East Technical University]. https://open.metu.edu.tr/handle/11511/45587
  • Koyun, A., & Kaymakçı, Ö. T. (2014). Bir Tramvay Hattının Güvenilirlik Analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(4). https://doi.org/10.17341/GUMMFD.69678
  • Kreuawan, S. (2008). Modelling and optimal design in railway applications [Ecole Centrale de Lille]. In http://www.theses.fr. http://www.theses.fr/2008ECLI0010
  • Manoharan, S., Devarajan, N., Deivasahayam, S. M., & Ranganathan, G. (2009). Review on efficiency improvement in squirrel cage induction motor by using DCR technology. Journal of Electrical Engineering, 60(4), 227–236.
  • Masuku, T. M., Wang, R. J., Botha, M. C., & Gerber, S. (2019). Design Strategy of Traction Induction Motors. Proceedings - 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa, SAUPEC/RobMech/PRASA 2019, 316–321. https://doi.org/10.1109/ROBOMECH.2019.8704761
  • Murthy, S. S., Singh, B., Bhuvaneswari, G., Naidu, K., & Siva, U. (2006). Design of squirrel cage induction motors for traction applications. 2006 International Conference on Power Electronics, Drives and Energy Systems, PEDES ’06. https://doi.org/10.1109/PEDES.2006.344344
  • Mushid, F. C., & Dorrell, D. G. (2017). Review of axial flux induction motor for automotive applications. Proceedings - 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis, WEMDCD 2017, 146–151. https://doi.org/10.1109/WEMDCD.2017.7947738
  • Nategl, S., Lindberg, D., Aglen, O., Brammer, R., & Boglietti, A. (2018). Review and Trends in Traction Motor Design: Electromagnetic and Cooling System Layouts. Proceedings - 2018 23rd International Conference on Electrical Machines, ICEM 2018, 2600–2606. https://doi.org/10.1109/ICELMACH.2018.8506817
  • Polat, M., & Akıncı, R. (2020). Elektrikli Araçlar İçin Eksenel Akılı Çift Rotorlu Sabit Mıknatıslı Senkron Motor Tasarımı ve Analizi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 345–358. https://doi.org/10.35234/FUMBD.636890
  • Popescu, M., Riviere, N., Volpe, G., Villani, M., Fabri, G., & Di Leonardo, L. (2019). A Copper Rotor Induction Motor Solution for Electrical Vehicles Traction System. 2019 IEEE Energy Conversion Congress and Exposition, ECCE 2019, 3924–3930. https://doi.org/10.1109/ECCE.2019.8912248
  • Smith, A. C. (2000). Integrating FE into induction motor design - A marriage of inconvenience? IEE Colloquium (Digest), 13, 17–23. https://doi.org/10.1049/IC:20000051
  • Steel Corporation, J. (n.d.). JFE electrical steel sheets. Retrieved January 28, 2022, from https://www.jfe-steel.co.jp/en/products/electrical/catalog/f1e-001.pdf
  • Zhao, N., & Schofield, N. (2016). An improved induction machine design procedure for electric vehicle traction. IET Conference Publications, 2016(CP684). https://doi.org/10.1049/CP.2016.0127
Avrupa Bilim ve Teknoloji Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Osman Sağdıç